Electrically Injected Diode Laser Could Increase Microprocessing Speed and Operational Efficiency

Facebook X LinkedIn Email
FAYETTEVILLE, Ark., Aug. 13, 2020 — A team of materials science researchers led by Shui-Qing “Fisher” Yu of the University of Arkansas has demonstrated use of an electrically injected laser made with germanium tin. The materials in the design are low cost and could improve microprocessing speeds for applications using the diode laser as a semiconducting material for circuits on electronic devices. The laser operated effectively in pulsed conditions up to 100 K, or −279 °F.

According to the researchers, germanium tin can be easily integrated into electronic circuits, such as those found in computer chips and sensors. In addition to low cost and light weight, the material could support electronic components that consume relatively low levels of power. Those components would rely on light to sense and transmit information.

Researchers in Yu’s lab have previously demonstrated germanium tin’s efficacy as a powerful semiconducting alloy. The current research stems from the laboratory’s earlier report of the development of a first-generation, “optically pumped” laser. In that work, Yu and his team injected light into germanium tin.

Fisher Yu, University of Arkansas. Courtesy of the University.
Fisher Yu, University of Arkansas. Courtesy of the University of Arkansas.
“Our results are a major advance for group IV-based lasers,” Yu said. “They could serve as the promising route for laser integration on silicon and a major step forward significantly improving circuits for electronic devices.”

The Air Force Office of Scientific Research sponsored the research. Yiyin Zhou, a doctoral student in the University of Arkansas’ microelectronics-photonics program, authored the article introducing the demonstration. Collaborators include researchers from Arizona State University, the University of Massachusetts Boston, Dartmouth College, Wilkes University, and semiconductor equipment manufacturer Arktronics.

The work is published in Optica, a publication of The Optical Society (OSA)  (

Published: August 2020
A crystalline semiconductor material that transmits in the infrared.
diode laser
A diode laser is a type of laser that uses a semiconductor diode as the active medium to generate coherent light. Semiconductor diodes are electronic devices that conduct electricity primarily in one direction and are commonly used in various applications such as light-emitting diodes (LEDs), photodiodes, and laser diodes. Key features and components of a diode laser include: Active medium: The active medium of a diode laser is a semiconductor diode made of materials such as...
AmericaAmericasUniversity of ArkansasgermaniumGermanium tindiode laserAir Force Office of Science ResearchLasersLasers & Material ProcessingcircuitssemiconductorsResearch & Technologyeducationindustrial

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.