Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Feedback Device Eliminates Mode Hops

Facebook Twitter LinkedIn Email Comments
BOZEMAN, Mont., Jan. 2, 2007 -- A nonmechanical electronic feedback control that reportedly provides dramatically improved mode-hop-free continuous range tuning could make it easier to detect many gases in the atmosphere, from carbon dioxide emissions to bioterrorism agents, said the Montana State University researchers who have developed it.

The device grew out of research seeking ways to monitor carbon dioxide sequestered underground. Carbon sequestration has emerged as a possible way to reduce CO2 emissions into the atmosphere, but one challenge has been finding a way to monitor for leaks, the university said in a statement.

Every gas absorbs light at different wavelengths due to its molecular structure. Researchers can determine what a gas is by observing how laser light is absorbed and by knowing the wavelength at which absorption occurs. The concentration of the gas can be determined by how much absorption occurs. Diode lasers are the most common laser used for this kind of work, due to their relatively low cost, low power requirements and compactness. However, such analysis has suffered from gaps, known as "mode hops," in which tuneable diode lasers are unable to access many wavelengths. As a result, some gases become very difficult to detect.

The MSU device eliminates those gaps in the tuning spectrum, allowing researchers to provide smooth continuous tuning with diode lasers. Applying small currents to thermally expand a diode laser can extend tuning ranges by greater than a factor of 70. The researchers have demonstrated a continuous mode-hope free tuning range of greater than 65 GHz when applying the technique to an optical sensor measuring diatomic oxygen. Studies based on quantum well diode lasers have produced external cavity diode lasers with a tuning range of 50 to 100 nm.

The external cavity diode laser feedback system extends the tunable range for applications including laser spectroscopy, optical sensing and chemical detection, including differential lidar spectral hole burning, the university said.

For more information, visit:
Jan 2007
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Basic ScienceBiophotonicsbioterrorism agentselectronic feedback controlgreenhouse effect carbon dioxidemode-hop free continuous range tuningMontana State UniversityNews & FeaturesphotonicsSensors & Detectors

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.