Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
LightMachinery Inc. - Picometer resolution

Fiber Photometry Manages, Records Brain Activity at Same Time

Facebook Twitter LinkedIn Email
BEIJING, July 12, 2022 — Researchers at Tsinghua University and Huazhong University of Science and Technology have developed an all-fiber-transmission photometry system that permits optogenetic manipulation and multicolor recording of neuronal activities and neurotransmitter release to take place concurrently. To support the study of brain activity in freely moving animals, the system is composed of a custom-designed, multibranch fiber bundle, through which it delivers all the light required for manipulating and recording brain activity.

The wavelength-independent system — it enables simultaneous manipulation and recording at different wavelengths — supports the need to comprehensively profile neural circuit functions and study neurological disease.

Photometry delivers a measure of visible light in units that are weighted against the brightness sensitivity perception of the human eye. Approaches to the technique based on fiber architectures have recently gained favor, the researchers said, as they provide the simple, stable recording of population activities with cell-type specificity in freely moving animals.

To study neural circuitry and neurological disease more effectively, scientists need the ability to monitor and manipulate neuronal activity at the same time. Most optogenetic techniques used to manipulate neuronal activity work independently from methods used to monitor and record brain activity.

The researchers’ non-wavelength-selective, multichannel fiber bundle is designed to perform the all-fiber transmission of both excitation light, for optogenetic stimulation, and emission light. Using a small multibranch fiber bundle in place of dichroic mirrors and an objective lens, the researchers realized, in the single fiber bundle, three excitation lights and two emission lights. This approach simplified the system and made it more robust and flexible for use in freely moving animal experiments.

The spectral transmittance of the multichannel bundle is about 60% per meter in the range of 400 to 900 nm. To decrease optical transmission loss, the researchers limited the bundle length to about 350 mm, which allows about 84% of the light to be transmitted.
Multicolor recording and optogenetic manipulation of neuronal activities in nucleus accumbens (NAc) of a freely moving mouse. (a): Simultaneous recording of dopamine dynamics and neuronal calcium (CA<sup>2+</sup> signals in the NAcLat of a freely moving mouse. (b): Simultaneous multicolor recording and optogenetic manipulation of neuronal activities in the NAc of a freely moving mouse. Courtesy of Opto-Electronic Advances.
Multicolor recording and optogenetic manipulation of neuronal activities in nucleus accumbens (NAc) of a freely moving mouse. (a) Simultaneous recording of dopamine dynamics and neuronal calcium signals in a freely moving mouse. (b) Simultaneous multicolor recording and optogenetic manipulation of neuronal activities in a freely moving mouse. Courtesy of Opto-Electronic Advances.
Artifacts from optogenetic stimulation can be a common occurrence during recording since it is difficult to completely filter out optogenetic stimulation light. To suppress the optogenetic stimulation-induced artifacts and channel crosstalk, the researchers used a laser of narrow linewidth at 660 nm to activate the red light-drivable channelrhodopsin — light-gated ion channels — and inhibited the stimulation-induced artifacts using a lock-in amplification method.

The approach also allowed the researchers to separate the fluorescence signals of the dual-color channels. Further, the researchers used the system was used to extract fluorescence signals of two different colors — green fluorescent protein-based and red fluorescent protein-based — while it suppressed the potential artifacts caused by the optogenetic manipulation.

To characterize the loss in fluorescence signal in the fiber photometry system, the researchers tested the collection efficiency using a series of sodium fluorescein solutions and compared the results to those acquired using a traditional epi-fluorescence system. The results demonstrated that the all-fiber-transmission photometry system effectively excited and collected fluorescence signals, and the collection efficiency of the system outperformed a traditional epi-fluorescence system. 

In additional tests, the researchers recorded dynamic dopamine responses to unexpected rewards in the nucleus accumbens in a freely moving mouse. The team also showed simultaneous dual-color recording of neuronal calcium signals and dopamine dynamics in the nucleus accumbens upon delivery of an unexpected reward and the simultaneous optogenetic activation at dopaminergic terminals in the same location.

The researchers said that the fiber photometry system can be easily modified for other fluorescent probes and opsin-based sensors by changing the light sources and filter positions. It also has the potential to be modified into a closed-loop system that could guide optogenetic manipulation informed by real-time monitoring.

The research was published in Opto-Electronic Advances (www.doi.org/10.29026/oea.2022.210081). 

Photonics.com
Jul 2022
GLOSSARY
photometry
The science of the measurement of light intensity, where "light'' refers to the total integrated range of radiation to which the eye is sensitive. It is distinguished from radiometry in which each separate wavelength in the electromagnetic spectrum is detected and measured, including the ultraviolet and infrared.
fiber photometry
An optical recording technique that uses light source(s), a beamsplitting cube, light detector(s) and an optical fiber chronically implanted in animal brain to deliver excitation light to neurons tagged with a fluorescent calcium indicator(s) and to collect their overall calcium activity-induced fluorescence. The measured changes in fluorescence intensity are related to the underlying neuronal activity.
optical fiber
A thin filament of drawn or extruded glass or plastic having a central core and a cladding of lower index material to promote total internal reflection (TIR). It may be used singly to transmit pulsed optical signals (communications fiber) or in bundles to transmit light or images.
optogenetics
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
fluorescence
The emission of light or other electromagnetic radiation of longer wavelengths by a substance as a result of the absorption of some other radiation of shorter wavelengths, provided the emission continues only as long as the stimulus producing it is maintained. In other words, fluorescence is the luminescence that persists for less than about 10-8 s after excitation.
imagingphotometryFiber Photometrymedicalbrainbrain activityoptical brain monitoringbiomedical opticsoptical fiberfiber opticsoptogeneticsAsia PacificTsinghua UniversityResearch & Technologyeducationdiseaseion channelsion channelfluorescencefiber

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2022 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.