Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Fishy felon breaks a law of physics

Facebook Twitter LinkedIn Email Comments
Ashley N. Rice, [email protected]

A multilayer crystalline structure used by silvery fish to evade ocean predators bends the laws of physics and could be the key to developing better optical devices.

Reflective surfaces polarize light, but silver-colored fish such as sardines, herring and sprat do not polarize light in the way that most reflective surfaces do. They have overcome this basic law of reflection to conceal themselves from predators, according to new research from the University of Bristol.

Previously, it was thought that the fish’s skin – which contains multilayer arrangements of reflective guanine crystals – would fully polarize light and become less reflective.

The researchers discovered that the skin of herring and sardines contains not one but two types of guanine crystal – each with different optical properties. By mixing these two types, the fish’s skin does not polarize the reflected light and maintains its high reflectivity.

The shiny skin of fish such as sardines has two types of guanine crystal – each with different optical properties – that do not polarize reflected light, but rather maintain its high reflectivity. The silvery fish skin could hold the key to better optical devices, University of Bristol scientists say. Courtesy of National Oceanic and Atmospheric Administration/National Marine Fisheries Service (NOAA/NMFS)

“We believe these species of fish have evolved this particular multilayer structure to help conceal them from predators, such as dolphin and tuna,” said Dr. Nicholas Roberts of Bristol’s School of Biological Sciences. “These fish have found a way to maximize their reflectivity over all angles they are viewed from. This helps the fish best match the light environment of the open ocean, making them less likely to be seen.”

The fish’s silvery skin could hold the key to better optical devices, the researchers said.

“Many modern-day optical devices, such as LED lights and low-loss optical fibers, use these nonpolarizing types of reflectors to improve efficiency,” said doctoral candidate Tom Jordan. “However, these man-made reflectors currently require the use of materials with specific optical properties that are not always ideal. The mechanism that has evolved in fish overcomes this current design limitation and provides a new way to manufacture these nonpolarizing reflectors.”

The findings were reported in Nature Photonics (doi: 10.1038/nphoton.2012.260).

Jan 2013
law of reflection
The law stating that the angle of reflection is equal to the angle of incidence, the incident ray, reflected ray and normal to the surface, all being located in the same plane.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
With respect to light radiation, the restriction of the vibrations of the magnetic or electric field vector to a single plane. In a beam of electromagnetic radiation, the polarization direction is the direction of the electric field vector (with no distinction between positive and negative as the field oscillates back and forth). The polarization vector is always in the plane at right angles to the beam direction. Near some given stationary point in space the polarization direction in the beam...
Return of radiation by a surface, without change in wavelength. The reflection may be specular, from a smooth surface; diffuse, from a rough surface or from within the specimen; or mixed, a combination of the two.
BiophotonicsBioScanDr. Nicholas RobertsEnglandEuropeguanine crystalsherringlaw of physicslaw of reflectionlight sourcesNewsoptical fibersoptical propertiesopticsphotonicspolarizationpolarized lightpredator evasionreflectionsardinessilver fishspratTom JordanUniversity of BristolLEDs

view all
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.