Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Flexible, Wearable Sensor Detects Gas Leaks Instantly

Facebook Twitter LinkedIn Email Comments
POHANG, South Korea, April 20, 2021 — A wearable hologram sensor is able to instantly notify its user of the presence of volatile gases. The wearable device overcomes issues of high expense associated with current gas sensing technology, addressing the needs of workers in hazardous environments, such as petrochemical plants.

The sensor was developed through a joint research effort at Pohang University of Science and Technology (POSTECH) led by Junsuk Rho, a professor in the departments of mechanical and chemical engineering, and Young-Ki Kim of the department of chemical engineering. It integrates a metasurface with a gas-reactive liquid crystal optical modulator to provide an immediate visual holographic alarm when harmful gases are detected.

The metasurface the team used is hydrogenated amorphous silicon, known for its potential in future cloaking applications due to its control over the refractive index of light. The metasurface was chosen for its ability to transmit two-way holograms or 3D video images by freely controlling light.
Left, a depiction of the sensor’s composition, layers, and readouts. Top right image shows the nanopillar structure of the metasurface. Middle right shows the device as a sticker implemented on a pair of safety glasses. Bottom right shows the sensor’s readouts, a smiley face for normal conditions, and a caution symbol for elevated gas levels. Courtesy of POSTECH.
Left, a depiction of the sensor’s composition, layers, and readouts. Top right image shows the nanopillar structure of the metasurface. Middle right shows the device as a sticker implemented on a pair of safety glasses. Bottom right shows the sensor’s readouts: a smiley face for normal conditions and a caution symbol for elevated gas levels. Courtesy of POSTECH.

When exposed to gas, molecules within the device’s liquid crystal layer change orientation, triggering the metasurface’s polarization control of light, which raises the holographic image alarm in a matter of seconds. The target gas the researchers used was isopropyl alcohol. During experimentation with a whiteboard marker, the alarm was raised the moment the marker was brought to the sensor, the researchers reported. The sensor detected gas concentrations as low as approximately 200 ppm.

The device also required no support from external mechanical or electronic devices and was able to be fabricated through a one-step nanocomposite printing process. The metasurface structure, initially processed on a hard glass substrate, was designed to enable rapid production with a single-step nanocasting process on a curved or flexible structure, in this case polyethylene terephthalate (PET).

In application, the sensor can be attached like a sticker onto safety glasses and display the alarm before the user’s eyes. The researchers expect that the device will be capable of integration with glasses-type AR display systems, such as those under development at Apple, Samsung, Google, and Facebook.

Current efforts from the research team aim to create a high-performance environmental sensor that is able to display the type and concentration level of gases or biochemicals in the surrounding area with a holographic alarm. The team is also looking at optical design techniques that are able to encode various holographic images.

“This newly developed ultracompact wearable gas sensor provides a more intuitive holographic visual alarm than the conventional auditory or simple light alarms,” Rho said. “It is anticipated to be especially effective in more extreme work environments where acoustic and visual noise are intense.”

The research was published in Science Advances (www.doi.org/10.1126/sciadv.abe9943).

Photonics.com
Apr 2021
GLOSSARY
holography
The optical recording of the object wave formed by the resulting interference pattern of two mutually coherent component light beams. In the holographic process, a coherent beam first is split into two component beams, one of which irradiates the object, the second of which irradiates a recording medium. The diffraction or scattering of the first wave by the object forms the object wave that proceeds to and interferes with the second coherent beam, or reference wave at the medium. The resulting...
hologram
An interference pattern that is recorded on a high-resolution plate, the two interfering beams formed by a coherent beam from a laser and light scattered by an object. If after processing, the plate is viewed correctly by monochromatic light, a three-dimensional image of the object is seen.
hydrogenated amorphous silicon
A photoreceptor material used in solar cells and in drums for laser printers and high-speed copiers because of its high quantum efficiency over a wide spectral band, high data-rate capability and molecular-scale resolution.
Research & TechnologyPostechPohangPohang University of Science & TechnologyPohang University of Science and Technologyholographyhologrammetasurfacehydrogenated amorphoushydrogenated amorphous siliconpolyethylene terephthalatePETSensors & DetectorsgassafetyJunsuk RhoScience Advances

Comments
LATEST HEADLINES
view all
PHOTONICS MARKETPLACE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.