Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

GFP trapped in a nanodrop

Facebook Twitter LinkedIn Email Comments
Researchers at the National Institute of Standards and Technology in Gaithersburg, Md., have developed a technique to contain single protein molecules within optically trappable aqueous nanodroplets. The method is minimally destructive to the protein, and it offers an alternative to surface attachment or lipid encapsulation.

The scientists developed a piezoelectric actuated micropipette that inertially injected individual nanodroplets containing enhanced GFP into an immiscible perfluorotriamylamine matrix. Each droplet produced had a diameter of ≥700 nm. The drops could be optically trapped by optical tweezers because the refractive index of the matrix is lower than that of water.

To determine how well the technique worked, the investigators needed to study the fluorescence of the GFP in the droplets. Thus, they optically trapped the droplets in the detection volume of a confocal microscope. A 1064-nm laser from IPG Photonics Corp. of Oxford, Mass., formed the optical trap. To show that single GFP molecules were confined, they excited the fluorescent protein with 488-nm CW laser emission. A PerkinElmer avalanche photodiode detected the fluorescence. The researchers observed fluorescence followed by a single photobleaching event, showing that just one molecule was present.

They then studied how confinement affected the GFP dynamics to make sure that the molecule was freely diffusing and was not sticking to the water-surfactant-oil interface. To this end, they measured the rotational diffusion time of the molecule using time-resolved fluorescence anisotropy. The setup for these measurements included a mode-locked Coherent Ti:sapphire laser that was frequency-doubled to 461-nm, two photon-counting avalanche diodes from Micro Photon Devices in Bolzano, Italy, and single-photon-counting electronics from Becker & Hickl in Berlin.

Measurements showed that GFP in solution had a mean rotational diffusion time of 13.8 ±0.1 ns at 3 μM and 14.0 ±0.2 ns at 10 μM. GFP in the nanodrops had a similar mean rotational diffusion time of 12.6 ±1.0 ns at 3 μM and 15.5 ± 1.6 ns at 10 μM. From these numbers, the researchers concluded that the rotational motion inside the nanodroplets is consistent with rotation in free solution and, therefore, the protein does not aggregate at the interface. The work was published online March 27 by Langmuir.

Apr 2008
The emission of light or other electromagnetic radiation of longer wavelengths by a substance as a result of the absorption of some other radiation of shorter wavelengths, provided the emission continues only as long as the stimulus producing it is maintained. In other words, fluorescence is the luminescence that persists for less than about 10-8 s after excitation.
As We Go To PressBiophotonicsBreaking NewsenergyfluorescenceMicroscopypiezoelectric actuated micropipettePresstime Bulletinsingle protein molecules

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.