Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB

Graphene Clears Major Fabrication Hurdle

Facebook X LinkedIn Email
Graphene, the two-dimensional crystalline form of carbon, is a potential superstar for the electronics industry. With freakishly mobile electrons that can blaze through the material at nearly the speed of light – 100 times faster than electrons can move through silicon – graphene could be used to make superfast transistors or computer memory chips.

Graphene's unique "chicken wire" atomic structure exhibits incredible flexibility and mechanical strength, as well as unusual optical properties that could open a number of promising doors in both the electronics and the photonics industries. However, among the hurdles preventing graphite from joining the pantheon of star high-tech materials, perhaps none looms larger than just learning to make the stuff in high quality and usable quantities.

"Before we can fully utilize the superior electronic properties of graphene in devices, we must first develop a method of forming uniform single-layer graphene films on nonconducting substrates on a large scale," said Yuegang Zhang, a materials scientist with the Lawrence Berkeley National Laboratory (LBNL).


Panel (a): Optical image of a CVD graphene film on a 450 nanometer copper shows the finger morphology of the metal; (b) Raman 2D band map of the graphene film between the metal fingers, over the area marked by the red square on left. (Image: Yuegang Zhang)

Current fabrication methods based on mechanical cleavage or ultrahigh vacuum annealing, he said, are ill-suited for commercial-scale production. Graphene films made via solution-based deposition and chemical reduction have suffered from poor or uneven quality.

Zhang and colleagues at LBNL's Molecular Foundry, a US Department of Energy (DoE) center for nanoscience, have taken a significant step at clearing this major hurdle. They have successfully used direct chemical vapor deposition (CVD) to synthesize single-layer films of graphene on a dielectric substrate.

Zhang and his colleagues made their graphene films by catalytically decomposing hydrocarbon precursors over thin films of copper that had been pre-deposited on the dielectric substrate. The copper films subsequently dewetted (separated into puddles or droplets) and were evaporated. The final product was a single-layer graphene film on a bare dielectric.

"This is exciting news for electronic applications because chemical vapor deposition is a technique already widely used in the semiconductor industry," Zhang said. "Also, we can learn more about the growth of graphene on metal catalyst surfaces by observing the evolution of the films after the evaporation of the copper. This should lay an important foundation for further control of the process and enable us to tailor the properties of these films or produce desired morphologies, such as graphene nanoribbons."

Trioptics GmbH - Worldwide Benchmark 4-24 LB

Zhang and his colleagues have reported their findings in the journal Nano Letters in a paper titled, "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces." Other co-authors of this paper were Ariel Ismach, Clara Druzgalski, Samuel Penwell, Maxwell Zheng, Ali Javey and Jeffrey Bokor, all with Berkeley Lab.

In their study, Zhang and his colleagues used electron-beam evaporation to deposit copper films ranging in thickness from 100 to 450 nanometers. Copper was chosen because as a low carbon solubility metal catalyst it was expected to allow better control over the number of graphene layers produced. Several different dielectric substrates were evaluated including single-crystal quartz, sapphire, fused silica and silicon oxide wafers. CVD of the graphene was carried out at 1,000 degrees Celsius in durations that ranged from 15 minutes up to seven hours.

"This was done to allow us to study the effect of film thickness, substrate type and CVD growth time on the graphene formation," Zhang says.




To make a graphene thin film, Berkeley researchers (a) evaporated a thin layer of copper on a dielectric surface; (b) then used CVD to lay down a graphene film over the copper. (c) The copper dewets and evaporates leaving (d) a graphene film directly on a dielectric substrate. (Image: Yuegang Zhang) 

A combination of scanning Raman mapping and spectroscopy, plus scanning electron and atomic force microscopy confirmed the presence of continuous single-layer graphene films coating metal-free areas of dielectric substrate measuring tens of square micrometers.

"Further improvement on the control of the dewetting and evaporation process could lead to the direct deposition of patterned graphene for large-scale electronic device fabrication," Zhang said. "This method could also be generalized and used to deposit other two-dimensional materials, such as boron-nitride."

Even the appearance of wrinkles in the graphene films that followed along the lines of the dewetting shape of the copper could prove to be beneficial in the long-run. Although previous studies have indicated that wrinkles in a graphene film have a negative impact on electronic properties by introducing strains that reduce electron mobility, Zhang believes the wrinkles can be turned to an advantage.

"If we can learn to control the formation of wrinkles in our films, we should be able to modulate the resulting strain and thereby tailor electronic properties," he says. "Further study of the wrinkle formation could also give us important new clues for the formation of graphene nanoribbons."

This work was primarily supported by the DoE Office of Science.

For more information, visit:  www.lbl.gov 

Published: April 2010
Glossary
dewetting
Dewetting is a phenomenon in materials science and physics where a thin film or coating spontaneously undergoes a process of breaking up and forming isolated droplets on a substrate. This occurs due to the reduction of intermolecular forces or other factors that lead to a loss of film stability. Dewetting can happen in various materials, including polymers, metals, and liquids, and it is influenced by factors such as temperature, surface energy, and the nature of the substrate. The dewetting...
graphene
Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure: Graphene...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
scanning electron microscopy
Scanning electron microscopy (SEM) is an advanced imaging technique used in microscopy to obtain high-resolution, three-dimensional images of the surfaces of solid specimens. SEM achieves this by using a focused beam of electrons to scan the specimen's surface, resulting in detailed images with magnifications ranging from about 10x to 100,000x or higher. Key features and principles of scanning electron microscopy include: Electron beam: SEM uses an electron beam instead of visible light for...
Ali JaveyAmericasAriel Ismachatomic force mircroscopyatomic structureBasic ScienceCaliforniacarbonClara Druzgalskicomputer memory chipsDepartment of Energys Office of Sciencedewettinggraphenegraphene nanoribbonsJeffrey BokorLawrence Berkeley National LaboratoryMaxwell ZhengMicroscopymobile electronsnanooptical propertiesphotonicsResearch & TechnologySamuel Penwellscanning electron microscopyscanning Ramn mappingsemiconductorssingle-layer graphenespectroscopysuperfast transistorsTest & Measurementtwo-dimentioanl crystallineYuegang Zhang

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.