Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Graphene Diamond Junctions Mimic Brain Function

Facebook Twitter LinkedIn Email
Researchers from Nagoya University created graphene-diamond junctions capable of mimicking some of the human brain’s functions. The work opens doors for next-generation image-sensing memory devices.

The impetus for the research stems from the fact that computer architectures are subjected to complex data, which limits their processing speed, whereas the human brain can process highly complex data, such as images, with high efficiency.

A phenomenon known as “synaptic plasticity,” the ability of synapses (neuronal links) to adapt in response to an increased or decreased activity, is essential to human memory and learning. In the lab, research groups have attempted to re-create this effect using transistors and “memristors” (electronic memory devices whose resistance can be stored). Recently developed light-controlled memristors, or “photomemresistors,” can both detect light and provide nonvolatile memory, similar to human visual perception and memory.
Schematic images of optoelectronic synaptic functions of vertically aligned graphene/diamond junctions. Courtesy of Elsevier/Kenji Ueda from Nagoya University.
Schematic images of optoelectronic synaptic functions of vertically aligned graphene-diamond junctions. Courtesy of Elsevier/Kenji Ueda from Nagoya University.

With this in mind, researchers from Nagoya University designed graphene-diamond junctions capable of mimicking the characteristics of biological synapses and key memory functions. Researchers led by Kenji Ueda demonstrated optoelectronically controlled synaptic functions using junctions between vertically aligned graphene (VG) and diamond. The fabricated junctions mimic biological synaptic functions, such as the production of “excitatory post-synaptic current” (EPSC) — the charge induced by neurotransmitters at the synaptic membrane — when stimulated with optical pulses, and exhibit other basic brain functions, such as the transition from short-term memory (STM) to long-term memory (LTM).


“Our brains are well equipped to sieve through the information available and store what’s important. We tried something similar with our VG-diamond arrays, which emulate the human brain when exposed to optical stimuli,” Ueda said. “This study was triggered due to a discovery in 2016 when we found a large optically induced conductivity change in graphene-diamond junctions.”

Apart from EPSC, STM, and LTM, the junctions also show a paired pulse facilitation of 300% — an increase in postsynaptic current when closely preceded by a prior synapse.

The VG-diamond arrays underwent redox reactions induced by fluorescent light and blue LEDs under a bias voltage. The team attributed this to the presence of differently hybridized carbons of graphene and diamond at the junction interface, which led to the migration of ions in response to the light and in turn allowed the junctions to perform photo-sensing and photo-controllable functions similar to those performed by the brain and retina. Additionally, the VG-diamond arrays surpassed the performance of conventional rare-metal-based photosensitive materials in terms of photosensitivity and structural simplicity.

“Our study provides a better understanding of the working mechanism behind the artificial optoelectronic synaptic behaviors, paving the way for optically controllable brain-mimicking computers with better information-processing capabilities than existing computers,” Ueda said.

The research was published in Carbon (www.doi.org/10.1016/j.carbon.2021.06.060).


Vision-Spectra.com
Nov 2021
GLOSSARY
photosensitivity
That property of a material indicating that it will react when exposed to light energy.
Research & TechnologylasersopticsbrainNagoya Universitygraphenediamondsynapseneural computingneuromorphiccomputingoptoelectronicKenji Uedacarbonblue LEDsphotosensitivityphotomemresistorjunctionimage processing

Submit a Feature Article Submit a Press Release
Terms & Conditions Privacy Policy About Us Contact Us
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.