Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

“Greening” Your Flat-Screen TV

Facebook Twitter LinkedIn Email Comments
TEL AVIV, Israel, Sept. 7, 2010 — Researchers at Tel Aviv University developed an environmentally friendly organic LED light source for home electronics, medicine and clean energy.

The new light source applies a discovery in nanotechnology based on self-assembled peptide nanotubes to "greening" the optics and electronics industry. Nadav Amdursky, a doctoral student, and Gil Rosenman, a professor in the university’s department of electrical engineering, say their technology could make flat-screen TV production “green” and could even make medical equipment — such as subcutaneous ultrasound devices — more sensitive.

Organic LED light created in the Tel Aviv University lab.

Electronic products are known to pollute the environment with heavy metals before, during and after use. In the US alone, an estimated 70% of heavy metals in landfills comes from discarded electronics. Environmental costs are likely to increase as flat-screen TVs become larger and less expensive.

The scientists were inspired by a biomaterial involved in Alzheimer's disease research, which was discovered by Ehud Gazit, a professor at the university. They developed a new nanomaterial, applying both biology and physics. This biological material is the basis for their new, environmentally friendly variety of LEDs used in consumer and medical electronics.

The invention is more than a clean, green way to create light, the researchers say. It also generates a strong signal that can be used in other applications in the nanoworld of motors, actuators and ultrasound.

"We are growing our own light sources," said Amdursky, who worked under Rosenman during the project. The organic nanolightsticks that they developed using organic chemistry are made from carbon, which makes them cost-effective as well as environmentally friendly.

Unlike conventional light sources, the biologically derived light source has a nanoscale architecture, which facilitates integration into light-emitting devices such as LED TVs and improves the resolution of the picture. The team has recently written a patent to cover the technology.

According to Amdursky, the light emitted by the lightsticks is not appreciably different from the light that emanates from today's inorganically engineered LED lights.

"We don't need a special plant, bacterium or a big machine for growing these structures,” he said.

The core technology and structures, which are described in Advanced Materials, Nano Letters and ACS Nano, exhibit "piezoelectric characteristics," which are necessary for the development of tiny nanoultrasound machines that could scan cells from inside the body. Piezoelectric motors or actuators are only dozens of nanometers wide, which can lead to their application in energy-harvesting systems as supercapacitors — large energy-storage devices, necessary for the solar energy and wind energy businesses.

For more information, visit:
Sep 2010
That branch of science involved in the study and utilization of the motion, emissions and behaviors of currents of electrical energy flowing through gases, vacuums, semiconductors and conductors, not to be confused with electrics, which deals primarily with the conduction of large currents of electricity through metals.
The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
ACS NanoAdvanced MaterialsBasic SciencebiomaterialcapacitorscarbonDisplaysEhud Gazitelectronicsenergyenergy harvestingenvironmentflat-screenGil Rosenmangreen photonicsIsraellight sourcesmedical equipmentMiddle EastNadav AmdurskynanoNano LettersnanotechnologynanotubesOLEDsopticsorganic LEDpiezoelectricpollutionResearch & TechnologySolar EnergyTel Aviv UniversitytelevisionTVwind energyLEDs

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.