Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Harmonic Optical Tomography Images Nonlinear Samples in 3D

Facebook Twitter LinkedIn Email
Harmonic optical tomography (HOT) is a new technique for imaging microscopic, nonlinear, and inhomogeneous objects. It uses holographic information to generate 3D images of the sample. It is the result of a collaboration between researchers at the University of Illinois at Urbana-Champaign’s Beckman Institute for Advanced Science and Technology and Colorado State University. 

“Our lab specializes in using holographic data to investigate live cells and tissues,” professor Gabriel Popescu said. “We wanted to extend this technique to nonlinear samples by combining the holographic data and new physics models.” The HOT technique interferometrically measures the complex harmonic field and uses a scattering inverse model to reconstruct the 3D distribution of harmonophores.

The researchers began by developing theoretical models to describe how to image the tissue. They discovered a capability for 3D imaging that arose, counterintuitively, when the sample was illuminated with blurry, out-of-focus laser light. To collect data, researchers at Colorado State University designed and built a a custom, high-power laser. The data was reconstructed using computational imaging algorithms.

The researchers used two types of samples to test and demonstrate the HOT principle — a manufactured crystal that is typically used for generating nonlinear signals, and a muscle tissue sample. Although the experiments were based on second-order nonlinear materials, the experimental results showed that the approach could apply to any coherent nonlinear process. According to the researchers, the experiments verified a new form of optical tomography that validated the experimental predictions.

Imaging the muscles in mice with standard techniques, (l), and with harmonic optical tomography. The new technique is better at revealing the structure of the tissue. Courtesy of Gabriel Popescu/University of Illinois at Urbana-Champaign.

Imaging the muscles in mice with standard techniques (left), and with harmonic optical tomography (right). The new technique is better at revealing the structure of the tissue. Courtesy of Gabriel Popescu/University of Illinois at Urbana-Champaign.

“This new type of tomographic imaging could prove to be very valuable for a wide range of studies that currently rely on two-dimensional images to understand collagen fiber orientation, which has been used as a reporter for a number of types of cancer,” CSU researcher Jeff Field said.

“Unlike typical laser-scanning microscopes, an additional benefit of HOT is that its speed makes it much less vulnerable to vibrations and unwanted microscope drift, which leads to sharper images and increased repeatability,” Kimani Toussaint, a former professor in the College of Engineering at Illinois and now professor in the School of Engineering at Brown University, said.

The research was published in Nature Photonics ( 

Sep/Oct 2020
The optical recording of the object wave formed by the resulting interference pattern of two mutually coherent component light beams. In the holographic process, a coherent beam first is split into two component beams, one of which irradiates the object, the second of which irradiates a recording medium. The diffraction or scattering of the first wave by the object forms the object wave that proceeds to and interferes with the second coherent beam, or reference wave at the medium. The resulting...
Research & TechnologyeducationAmericasBiophotonicsimagingSensors & DetectorsMicroscopyopticsnonlinear opticslight sources3D imagingholographyoptical tomographyharmonic optical tomographycancerTech PulseBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.