Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

High-Gain and Low-Power ZnO Nanowire Photodetectors

Facebook Twitter LinkedIn Email Comments
Researchers have demonstrated a unique model that has implications for sensing, imaging, optical communications and memory storage.

Anne L. Fischer

Zinc oxide (ZnO) is frequently used as an alternative to GaN in optoelectronics because of its low cost, ease of manufacturing and wide bandgap. The proliferation of ZnO nanowire devices such as optically pumped lasers, chemical and biological sensors, and field-effect transistors has prompted additional research into the material. A group from the University of California, San Diego, recently looked at the two main factors that contribute to the high photosensitivity of ZnO nanostructures.


This image shows p-type ZnO nanowires. Courtesy of the University of California, San Diego.

The high photosensivity arises from the large surface-to-volume ratio and the presence of deep-level surface trap states in nanowires, which prolong the lifetime of the photocarrier. The second factor is the reduced dimensions of the active area in the nanowire devices, which shortens the carrier transit time. The researchers investigated the photoconductive gain that results from the combined long lifetime and short transit time of charge carriers.

They studied the photoconductivity of ZnO nanowires grown by chemical vapor deposition by taking time-resolved measurements in different ambient conditions, such as in air or under vacuum. To determine the charge carrier lifetime, they studied the photocurrent relaxation via time-resolved measurements using UV illumination at low excitation intensity.

They quantified the photoconduction mechanism that leads to the substantial photoconductive gain measure (G = 2 × 108). They found that the relaxation dynamics of photogenerated carriers consist of a fast decay component in the nanosecond time range, which is a result of the fast carrier thermalization and hole trapping by surface states, followed by a photocurrent, which was found to decay within several seconds.

In terms of time spans, they found that the photosensitivity and lifetime are greater when oxygen is deficient. The nanowire mechanism was effective even at the shortest time scale investigated, which was less than a nanosecond.

The researchers developed a model that shows the gain and predicts its dependence on excitation intensity and frequency. Using this model, they can demonstrate the uniqueness of nanowires as photodetectors for applications such as sensing, imaging, optical communications and memory storage, which use low-dimensional semiconductors with high-density surface trap states

Nano Letters, published online March 15, 2007.

Photonics Spectra
May 2007
A sub-field of photonics that pertains to an electronic device that responds to optical power, emits or modifies optical radiation, or utilizes optical radiation for its internal operation. Any device that functions as an electrical-to-optical or optical-to-electrical transducer. Electro-optic often is used erroneously as a synonym.
CommunicationsindustrialoptoelectronicsphotocarrierResearch & TechnologySensors & DetectorsTech Pulsezinc oxide

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.