Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Higher-Order Topological States Could Lead to Faster Data Transfer

Facebook Twitter LinkedIn Email Comments
Research into topological photonic metamaterials, led by City College of New York, shows that long-range interactions in metamaterials can change the behavior of lightwaves, forcing the waves to localize in space. The study further shows that by controlling the degree of these interactions, the character of the lightwaves can be switched from propagating to trapped. This discovery could lead to new ways to speed online data transfer, according to the researchers.

Photonic topological insulators enable topological boundary modes that are resilient to defects and disorder, irrespective of manufacturing precision. This property is known as topological protection. Higher-order topological insulators (HOTIs) offer topological protection over an extended range of dimensionalities.

The researchers introduced a photonic HOTI with kagome lattice that exhibited topological bulk polarization. This led to the emergence of one-dimensional edge states and higher-order zero-dimensional states, which were confined to the corners of the structure.

In addition to the corner states due to nearest-neighbor interactions, the researchers discovered a new class of topological corner states induced by long-range interactions and specific to photonic systems. Their findings could open new opportunities for engineering new electromagnetic states with a high degree of topological robustness.

Light localized in space inside the topological crystal, entangled by interaction and topology. Courtesy of ITMO University.
Light localized in space inside the topological crystal, entangled by interaction and topology. Courtesy of ITMO University.

“The new approach to trap light allows the design of new types of optical resonators, which may have a significant impact on devices used on a daily basis,” professor Alexander B. Khanikaev said. “These range from antennas in smartphones and Wi-Fi routers to optical chips in optoelectronics used for transferring data over the internet with unprecedented speeds.”

The research is a collaboration between the Photonics Initiative at the Graduate Center at City University of New York (CUNY) and ITMO University. The team continues to explore this new approach to trap visible and infrared light.

The research was published in Nature Photonics (www.doi.org/10.1038/s41566-019-0561-9). 

Photonics Spectra
Feb 2020
Research & TechnologyeducationAmericasCity College of New Yorklight sourcesmaterialsmetamaterialsphotonic crystalsphotonic devicesCommunicationsonline data transfertopological insulatorsTech Pulse

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.