Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Holey Fiber Supports Megawatt Pulses

Photonics Spectra
Nov 2003
Daniel S. Burgess

Scientists at Corning Inc. in Corning, N.Y., have developed a hollow-core photonic bandgap fiber that supports ultrashort pulses of infrared radiation with peak powers more than 100 times greater than those tolerated by conventional optical fiber. Such fibers promise applications across a variety of fields, including telecommunications.

The researchers produced the fiber by the stack-and-draw method, bundling capillaries to create a preform that they draw into a fiber while monitoring the exterior diameter of the pulled product. The fiber in cross section features a 12.7-µm-diameter central hole surrounded by eight rings of hexagonal airholes with a pitch of 4.7 µm, a structure that offers a transmission window from 1395 to 1510 nm and an attenuation of 13 dB/km at 1500 nm.

Working with a team at Cornell University in Ithaca, N.Y., the researchers investigated the performance of the material. In tests in air, the 3-m-long fiber transmitted 900-nJ, 110-fs pulses of radiation centered at 1470 nm. Spectral analysis of the output revealed that intrapulse Raman scattering shifted the wavelength of the pulses to approximately 1530 nm. When a 170-cm-long piece of the fiber was filled with xenon gas, it transmitted 470-nJ, 75-fs pulses of 1510-nm radiation with virtually no wavelength shift.

Karl W. Koch, a researcher on the team from Corning, explained that the performance of such photonic bandgap fibers makes them of particular interest for use in telecommunications. He said that the group has produced kilometer-long lengths of the fiber. Other applications might include their use in fiber amplifiers and lasers, multiphoton spectroscopy and photodynamic therapy. He predicted that the fibers will find a place in photonic components within two years and that they will be used for the transmission of optical telecom signals within five to 10 years.

optical fiber
A thin filament of drawn or extruded glass or plastic having a central core and a cladding of lower index material to promote total internal reflection (TIR). It may be used singly to transmit pulsed optical signals (communications fiber) or in bundles to transmit light or images.
bandgap fibeCommunicationsCorning Inc.fiber opticsinfrared radiationoptical fiberResearch & TechnologyTech Pulsetelecommunications

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.