Search
Menu
Meadowlark Optics - SEE WHAT

Holographic Display Improvements Enhance AR, VR

Facebook X LinkedIn Email
Stanford University researchers have developed an approach to improve the image quality and contrast of holographic displays. The technology, as a result, may help to improve near-eye displays for virtual and augmented reality applications.

The approach, called Michelson holography, combines an optical setup inspired by Michelson interferometry with a recent software development to produce the interference patterns necessary to generate digital holograms.

In holographic displays, optical components known as phase-only spatial light modulators (SLMs) curb image quality. SLMs function to create the diffracted light that makes the interference pattern necessary for visible 3D images.

The problem is that SLMs used for holography tend to exhibit a low diffraction efficiency that significantly reduces image quality and, particularly, contrast.
Michelson holography shows significant improvements in image quality, contrast, and speckle reduction compared with all other conventional methods, such as Naïve SGD, shown left. Courtesy of Jonghyun Kim, NVIDIA/Stanford University.
Michelson holography shows significant improvements in image quality, contrast, and speckle reduction compared with other conventional methods, such as Naïve SGD, shown left. Courtesy of Jonghyun Kim, NVIDIA/Stanford University.

“Although we’ve recently seen tremendous progress in machine-learning-driven computer-generated holography, these algorithms are fundamentally limited by the underlying hardware,” said Jonghyun Kim, a research team member from NVIDIA and Stanford. “We co-designed a new hardware configuration and a new algorithm to overcome some of these limitations and demonstrate state-of-the-art results.” 

Instead of attempting to increase the diffraction efficiency of SLMs — a decidedly difficult task — the researchers decided to design an entirely new optical architecture. While most setups use only one phase-only SLM, the researchers’ approach uses two.

Deposition Sciences Inc. - Difficult Coatings - MR-8/23

“The core idea of Michelson holography is to destructively interfere with the diffracted light of one SLM using the undiffracted light of the other,” Kim said. “This allows the undiffracted light to contribute to forming the image rather than creating speckle and other artifacts.”

The researchers paired the new setup with a camera-in-the-loop (CITL) optimization procedure modified specifically for their particular setup. CITL optimization is a computational method that can be used to optimize a hologram directly, or to train a computer model based on a neural network.

The procedure enabled the researchers to use a camera to capture a series of displayed images, meaning that they could correct small misalignments of the optical system without the use of precise measuring devices.

“Once the computer model is trained, it can be used to precisely figure out what a captured image would look like without physically capturing it,” Kim said. “This means that the entire optical setup can be simulated in the cloud to perform real-time inference of computationally heavy problems with parallel computing. This could be useful for calculating a computer-generated hologram for a complicated 3D scene, for example.”

The system was tested in the lab on a benchtop optical setup where it was used to display multiple 2D and 3D holographic images that the researchers recorded with a conventional camera. In testing, the display provided significantly better image quality than existing computer-generated hologram approaches.

The setup, however, is not yet practical for many settings; it would need to be miniaturized from the benchtop to something small enough for wearable augmented and virtual reality systems. The researchers note that the approach of co-designing the hardware and software may prove useful in the pursuit of improving other computational displays and computational imaging more broadly.

The research was published in Optica (www.doi.org/10.1364/optica.410622).

Published: January 2021
Glossary
interferometry
The study and utilization of interference phenomena, based on the wave properties of light.
hologram
An interference pattern that is recorded on a high-resolution plate, the two interfering beams formed by a coherent beam from a laser and light scattered by an object. If after processing, the plate is viewed correctly by monochromatic light, a three-dimensional image of the object is seen.
holography
Holography is a technique used to capture and reconstruct three-dimensional images using the principles of interference and diffraction of light. Unlike conventional photography, which records only the intensity of light, holography records both the intensity and phase information of light waves scattered from an object. This allows the faithful reproduction of the object's three-dimensional structure, including its depth, shape, and texture. The process of holography typically involves the...
spatial light modulator
A spatial light modulator (SLM) is an optical device that modulates or manipulates the amplitude, phase, or polarization of light in two dimensions, typically in the form of an array. SLMs are versatile tools used in various optical applications, including adaptive optics, optical signal processing, holography, and imaging. There are different types of SLMs, each with its own operating principle: Liquid crystal spatial light modulators (LC-SLM): These SLMs use liquid crystal technology to...
virtual reality
Virtual reality (VR) is a computer-generated simulation of a three-dimensional environment or experience that can be interacted with and explored by an individual using electronic devices, such as a headset with a display. VR aims to create a sense of presence, immersing users in a computer-generated world that can be entirely fictional or a replication of the real world. It often involves the use of specialized hardware and software to provide a fully immersive and interactive experience. ...
augmented reality
Augmented reality (AR) is a technology that integrates digital information, typically in the form of computer-generated graphics, images, or data, with the real-world environment in real-time. AR enhances the user's perception of the physical world by overlaying or combining digital content onto the user's view of the real world, often through devices like smartphones, tablets, smart glasses, or specialized AR headsets. Key features and principles of augmented reality: Real-time...
Research & TechnologyOpticsinterferometryMichelsonmichelson interferometrycamera-in-the-loopCITLholographhologramholographyholographic displayspatial light modulatorspatial light modulatorsSLMAmericasStanfordStanford Universityvirtual realityaugmented realityTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.