Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

IR Wireless Signals High Bandwidth at Low Power

Facebook Twitter LinkedIn Email Comments
Richard Gaughan

Wireless infrared local-area networking is a flexible and economical alternative to hardwired interconnections. Unlike radio frequency transmission, both narrow- and wide-angle infrared communications can support high data rates, but at a cost. Narrow-angle transmission requires precise alignment of transmitter and receiver, while wide-angle transmission demands high power.

Mohsen Kavehrad and Svetla Jivkova, researchers at Pennsylvania State University in University Park, have illustrated a model that combines elements of both narrow- and wide-angle systems to deliver high data rates with low power. Prototype components have been constructed, and Kavehrad plans to demonstrate a system prototype. Results described are drawn from computer simulation of room, transmitter and receiver.

Rather than illuminating an entire room, the transmitter integrates an eight-level computer-generated hologram coupled to an IR diode to create a 10 x 10 array of 5-cm spots on the ceiling. The spots are small, allowing their intensity to be kept relatively low; the receiver's narrow 7° field of view helps filter background illumination.

As long as the angle of incidence does not exceed 60°, each spot acts as a secondary lambertian source, reflecting at a constant intensity, regardless of the angle from which it is viewed. The spot-to-spot intensity variation is less than 1.5 percent.

The receiver uses a multibranch configuration with several adjacent small fields. It is constructed from a holographic curved mirror with a 6-mm-diameter silicon photodiode positioned at its focus. The mirror functions as a 20-nm bandwidth spectral filter.

The transmission spot array and the receiver field of view are designed to ensure that only one transmission spot is contained within the field, which eliminates the problem of multiple signal paths. Multiple reflections still can limit the bandwidth of the system, but with appropriate signal encoding and modulation, data rates of hundreds of megabits per second are achievable with a transmitter that consumes well under 1 W.

Photonics Spectra
Nov 2001
CommunicationsResearch & TechnologyTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.