Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Integrated Photonic Circuits Demonstrate Ultralow Loss

Facebook Twitter LinkedIn Email
LAUSANNE, Switzerland, April 27, 2021 — Researchers at École polytechnique fédérale de Lausanne’s (EPFL’s) School of Basic Sciences have developed a technology that produces silicon nitride integrated photonic circuits with low optical losses and small footprints.

Silicon is favored as a material for integrated photonic chips due to its abundance and optical properties, though the material has an optical loss orders of magnitude higher than that of silicon nitride. As a result, silicon nitride has been a material of choice for applications where low loss is critical, such as narrow-linewidth lasers, photonic delay lines, and those in nonlinear photonics.
Integrated silicon nitride photonic chips with meter-long spiral waveguides. Courtesy of Jijun He and Junqiu Liu, EPFL.
Integrated silicon nitride photonic chips with meter-long spiral waveguides. Courtesy of Jijun He and Junqiu Liu, EPFL.

In its process, the EPFL team combined nanofabrication and material science, based on the photonic Damascene process developed at EPFL. With this process, the team made integrated circuits of optical losses of only 1 dB/m, a record value for any nonlinear integrated photonic material, according to the researchers.


That low loss considerably reduces the power budget for building chip-scale optical frequency combs, or microcombs, used in applications that include coherent optical transceivers, low-noise microwave synthesizers, lidar, neuromorphic computing, and optical atomic clocks. The team used the new technology to develop meter-long waveguides on 5- × 5-mm2 chips and high-quality factor microresonators.

The researchers additionally reported high fabrication yield, essential to scaling up to industrial production.

“These chip devices have already been used for parametric optical amplifiers, narrow-linewidth lasers, and chip-scale frequency combs,” said Junqiu Liu, who led the fabrication at EPFL’s Center of MicroNanoTechnology (CMi). “We are also looking forward to seeing our technology being used for emerging applications such as coherent lidar, photonic neural networks, and quantum computing.”

The research was published in Nature Communications (www.doi.org/10.1038/s41467-021-21973-z).

Photonics.com
Apr 2021
GLOSSARY
chip
1. A localized fracture at the end of a cleaved optical fiber or on a glass surface. 2. An integrated circuit.
Research & Technologyopticsmaterialsphotonic circuitchipoptical losslow optical lossEPFLEuropeintegrated photonicsintegrated photonics circuitsintegrated photonic chipintegrated photonic circuitssiliconsilicon nitride

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.