Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Intel, FB Team to Move Photonics into Data Centers
Jan 2013
SANTA CLARA, Calif., Jan. 17, 2013 — Intel Corp. is collaborating with Facebook to define the next generation of rack technologies used to move huge amounts of information through the world's largest data centers, the companies announced this week at the Open Compute Summit in Santa Clara. Their approach is based on Intel's silicon photonics technology, which uses light to move data at very high speeds over optical fiber rather than electrical signals through a copper cable. Also as part of their collaboration, they unveiled a prototype that will "open source" Intel's silicon photonics.

"Intel and Facebook are collaborating on a new disaggregated, rack-scale server architecture that enables independent upgrading of compute, network and storage subsystems that will define the future of mega-datacenter designs for the next decade," said Justin Rattner, Intel's chief technology officer, in his keynote address. "Rack disintegration" refers to the separation of resources that currently exist in a rack, including compute, storage, networking and power distribution, into discrete modules. Separating compute and storage resources in a server rack can save businesses with large data centers a significant amount of money because it adds flexibility to the system and makes it more easily upgradable — increasing its life span — and reliable.

A 50-Gb/s silicon photonics transmit module (left) sends laser light from the silicon chip at the center of the green board, which then travels through optical fiber to the receiver module (right), where a second silicon chip detects the data on the laser and converts it back into an electrical signal. Courtesy of Intel.

The new architecture is based on more than a decade's worth of research to invent a line of silicon-based photonic devices, including lasers, modulators and detectors, using low-cost silicon to fully integrate photonic devices of unprecedented speed and energy efficiency, Rattner said. Intel has spent the past two years proving its silicon photonics technology was production-worthy and has now created engineering samples that run at speeds up to 100 Gb/s.

A mechanical prototype of the architecture unveiled at the summit by Quanta Computer demonstrated the separate distributed switching functions.

"We're excited about the flexibility that these technologies can bring to hardware and how silicon photonics will enable us to interconnect these resources with less concern about their physical placement," said Frank Frankovsky, chairman of the Open Compute Foundation and vice president of hardware design and supply chain at Facebook. "We're confident that developing these technologies in the open and contributing them back to the Open Compute Project will yield an unprecedented pace of innovation, ultimately enabling the entire industry to close the utilization gap that exists with today's systems designs."

Intel will contribute a design for enabling such a photonic receptacle to the Open Compute Project (OCP) and will work with Facebook, Corning and others to standardize the design, the company said. The mechanical prototype includes the 22-nm next-generation system-on-chip Intel Atom processor code-named Avoton, which is expected to be available this year.

Intel and Facebook are founding board members of the OCP and have long been technology collaboration partners, Intel said.

For more information, visit: or

optical fiber
A thin filament of drawn or extruded glass or plastic having a central core and a cladding of lower index material to promote total internal reflection (TIR). It may be used singly to transmit pulsed optical signals (communications fiber) or in bundles to transmit light or images.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
AmericasAvotonBusinessCommunicationsCorningdata centerFacebookfiber opticsFrank FrankovskyIntelJustin RattnerOCPOpen Compute FoundationOpen Compute ProjectOpen Compute Summitopen sourceoptical fiberopticsphotonicsQuanta ComputerResearch & TechnologySensors & Detectorssilicon photonicslasers

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.