Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

LED Light Combiner Allows High-Intensity Headlight Design

Facebook Twitter LinkedIn Email Comments
Lauren I. Rugani

High luminosity, low power consumption and longevity are among the characteristics that make LEDs ideal lighting sources for applications such as automobile headlights. However, several hurdles remain to achieving an efficient optical design, including color and luminance variations among the LEDs that are visible in a headlight’s beam pattern. A team of researchers from Universidad Politécnica de Madrid, LPI Europe in Madrid and LPI LLC in Altadena, Calif., has addressed these and other challenges with the simultaneous multiple surface design method.

More than a dozen LEDs per headlight are required to attain a flux comparable to current high-intensity headlights. The team’s design incorporates an element that combines the flux of three 75-lm LEDs to produce a single light source with increased output. The LEDs consist of an InGaN blue chip with a phosphor coating, and each has a flat exit aperture of ~1.2 mm2. A tailored lightguide in contact with the LED surface collects light from each of the diodes and reduces the color and flux variations among them. The optical contact of this combiner to the LED surface restricts light loss and improves efficiency and output.

The simultaneous multiple surface design comprises an attached refractive free-form exit lens and a reflective free-form coated mirror that project the light from the virtual LED source to the far field, creating the vertical intensity gradient of the headlight pattern. The design requires two pairs of wavefronts for input parameters, two optical path lengths between the corresponding pairs and a seed curve on one of the surfaces, which defines the vertical extent of the projected images.

The input wavefronts are spherical surfaces emitted from the corners of the LED combiner exit aperture, while the output wavefronts contain the information of the vertical and horizontal spread and shape of the full beam pattern. Calculations then couple corresponding input and output wavefronts to ensure that the outgoing wavefronts control the exact path of the rays emitted from the edges of the combiner. All the points generated by these four wavefronts eventually define the full optical design.

The researchers created both low-and high-beam designs with 76 and 77.2 percent efficiency, respectively, and corresponding intensities of 52.9 and 115 lux — values that meet legal standards. Among the design advantages is the tolerance between the LEDs and the lightguide, which allows for ±0.2-mm placement error without affecting the emitted light pattern.

Optics Express, Dec. 25, 2006, pp. 113014-113020.

Photonics Spectra
Feb 2007
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
ConsumerdiodesFeatureslight sourcesoptical designphotonicsLEDs

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.