Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Laser-Chilled Atoms Sit for Ultrafast Portrait

Photonics Spectra
May 1997
Physicists from the University of Michigan recently fired 70-fs pulses from a Ti:sapphire laser to control the random movements of atoms in a potassium-tantalite crystal. The laser was split in two beams, with one arriving at the crystal target a few picoseconds after the first. The first pulse created pairs of phonons -- "squeezed" particles of vibrational energy -- that scattered the second, weaker pulse as it passed through the crystal. By measuring the energy that continued through the crystal, physicists could visualize the crystal's atomic structure.

Basic ScienceResearch & TechnologyTech Pulselasers

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.