Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Laser Cools Antimatter to Near Absolute Zero

Facebook Twitter LinkedIn Email
JOEL WILLIAMS, ASSOCIATE EDITOR
[email protected]

A custom-built laser has cooled antimatter to near absolute zero. The work, carried out by researchers with the CERN-based ALPHA collaboration, holds significant implications for the study of antimatter and its properties, and of foundational theories of the universe.

Antimatter is nearly identical to matter in terms of its behavior and characteristics, but it possesses the opposite charge. When matter and antimatter come into contact, they annihilate one another. Experimentation remains difficult for this reason.
An artistic illustration of the movement of an antihydrogen atom in the ALPHA magnetic trap, before (grey) and after (blue) laser cooling. Courtesy of Chukman So, TRIUMF.
The movement of an antihydrogen atom in the ALPHA magnetic trap, before (gray) and after (blue) laser cooling. Courtesy of Chukman So, TRIUMF.

“The antimatter atoms must be held in an extremely high vacuum in order to prevent them from annihilating with residual gases,” said Makoto Fujiwara, TRIUMF scientist and original proponent of the laser cooling idea. “We manipulate antimatter without destroying it by exerting force from laser light onto the anti-atoms.”

To cool the anti-atoms, the researchers had to design a laser system themselves.

“Since we cannot use any conventional dye laser, we had to design the laser system from scratch using nonlinear crystals (Ti:sapphire),” Takamasa Momose, University of British Columbia researcher and designer of the laser, told Photonics Media.

Among the challenges of building the laser that Momose noted were frequency purity and high power requirements.

“The precise control of the detuning frequency from the resonant frequency is key for precise manipulation of anti-atoms,” Momose said. In the case of the antihydrogen atoms, the frequency purity, or laser linewidth, had to be less than 50 MHz at 121.6 nm.

To keep the linewidth narrow, the team employed third harmonic generation with one color to generate 121.6 nm, rather than using four-wave mixing of two colors, which usually provides about 100× greater intensity but with a much broader linewidth.


Aligning the laser also proved challenging, Momose said. The researchers constructed an optical transport system consisting of several mirrors and windows to introduce the laser pulses, which had to be roughly 1 nJ per pulse, into the magnetic trap within the cryogenic chamber.

The cooling of antimatter enables a variety of precision tests to further investigate the characteristics of antimatter.

“With this technique, we can address long-standing mysteries like ‘How does antimatter respond to gravity? Can antimatter help us understand symmetries in physics?’ These answers may fundamentally alter our understanding of our universe,” Momose said.

To that end, Momose and Fujiwara are now leading a new project dubbed HAICU, which aims to develop new quantum techniques for antimatter studies.

“My next dream is to create an ‘anti-atomic fountain’ by tossing the anti-atoms into free space, which would in turn allow antimatter-wave interferometry,” Fujiwara told Photonics Media. “These techniques would permit extremely precise measurements on antimatter properties by taking advantage of emerging quantum technology.”

“Since we can increase the density of antihydrogen using this cooling technique, we now have a chance to create a first antimatter molecule (like H2+),” Momose said. “Making a first antimatter molecule is my primary interest.”

Momose additionally expressed interest in the spectroscopy of antimolecules. That, he said, may be more sensitive than spectroscopy of anti-atoms in the investigation of fundamental physics matters such as violations of charge, parity, and time symmetry.

The research was published in Nature (www.doi.org/10.1038/s41586-021-03289-6).

Photonics Spectra
Jun 2021
GLOSSARY
laser cooling
A process and method by which manipulation and orientation of a given number of directed laser beams decreases the motion of a group of atoms or molecules such that their internal thermodynamic temperatures reach near absolute zero. The 1997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for the development of methods to cool and trap atoms with laser light.
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
Research & Technologylasersantimatteranti-hydrogenantihydrogenantihydrogen atomslaser coolingabsolute zeroTRIUMFNaturequantumphysicsAmericasCanadaUniversity of British Columbiaspectroscopydye laserslaser systemsTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.