Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Laser Device Images, Tracks Cells, Dye-free

Facebook Twitter LinkedIn Email
LAUSANNE, Switzerland, Feb. 13, 2013 — Without contrast dyes or fluorophores, a new device can image and track living cells’ reactions to various stimuli and create 3-D images of biological tissue at the nanoscale in just minutes.

The system, developed by Yann Cotte and Fatih Toy of Ecole Polytechnique Fédérale de Lausanne (EPFL), combines holographic microscopy and computational image processing to obtain 3-D images of living cells from every angle at a resolution of less than 100 nm. Because the tissue can be imaged without using contrast dyes or fluorescents, foreign substances will not distort the experimental results.


Yann Cotte (left) and Fatih Toy are using their setup — a holographic microscope (rear) and visualization computer — to get accurate 3-D models of live cells. Courtesy of Alain Herzog/EPFL.

“We can observe in real time the reaction of a cell that is subjected to any kind of stimulus,” Cotte said. “This opens up all kinds of new opportunities, such as studying the effects of pharmaceutical substances at the scale of the individual cell.”

The researchers demonstrated the potential of their system by capturing one image per minute to show the growth of a neuron and the birth of a synapse over the course of an hour. The work was done in collaboration with the Neuroenergetics and cellular dynamics laboratory in EPFL’s Brain Mind Institute.

"Because we used a low-intensity laser, the influence of the light or heat on the cell is minimal," Cotte said. "Our technique thus allows us to observe a cell while still keeping it alive for a long period of time."


Numerous images extracted by holography are captured by a digital camera while the laser scans the sample. These images are assembled by a computer and “deconvoluted” to eliminate noise. To develop their algorithm, the scientists designed and built a “calibration” system using a thin layer of aluminum pierced with 70-nm-diameter nanoholes spaced 70 nm apart.


Thanks to this setup, a “cold” laser beam hits a sample at the center; a camera then analyzes the phase (holographic technique), and a computer builds a 3-D image of the sample, including its interior. Courtesy of Yann Cotte and Fatih Toy, EPFL.

The assembled 3-D image of the cell, which looks as focused as an encyclopedia drawing, can be virtually “sliced” to expose its internal elements, such as the nucleus, genetic material and organelles.

Cotte and Toy are now working in collaboration with the startup Lyncée SA to develop a system that could be used to observe cells in vivo.

Their research is being carried out under the supervision of Christian Depeursinge, head of the Microvision and Microdiagnostics Group in EPFL's School of Engineering.

Findings were reported in Nature Photonics (doi: 10.1038/nphoton.2012.329).  

For more information, visit: www.epfl.ch

Photonics.com
Feb 2013
GLOSSARY
digital camera
A camera that converts a collected image into pixels that are black or white digital or shades of gray. The digital data may then be manipulated to enhance or otherwise modify the resulting viewed image.
holography
The optical recording of the object wave formed by the resulting interference pattern of two mutually coherent component light beams. In the holographic process, a coherent beam first is split into two component beams, one of which irradiates the object, the second of which irradiates a recording medium. The diffraction or scattering of the first wave by the object forms the object wave that proceeds to and interferes with the second coherent beam, or reference wave at the medium. The resulting...
3-D live cell imagingBiophotonicscamerasChristian Depeursingecomputational image processingcontrast-free imagingdigital cameradye-free imagingEcole Polytechnique Fédérale de LausanneEPFLEuropeFatih Toyfluorescent-free imaginggrowing neuronholographyimagingliving tissue imagingMicroscopyResearch & TechnologySwitzerlandYann Cottelasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.