Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Lasers Could Lead Search for Water on Earth’s Moon

Facebook Twitter LinkedIn Email Comments
TUCSON, Ariz., March 11, 2020 — There are craters in the moon’s south pole that have remained dark for billions of years, but scientists have found evidence that the region may contain water. NASA has awarded nearly $1 million to eight university teams to develop methods to search for, and eventually extract, water from these permanently shadowed regions.

One research team, led by the Colorado School of Mines in partnership with the University of Arizona, is combining laser power with femtosats — tiny, disposable satellites — to search for water on Earth’s moon.

NASA selected eight university teams, including a joint team of researchers from the Colorado School of Mines and the University of Arizona, to develop technology to support efforts to find and harvest water on the Moon's south pole. Courtesy of NASA.
NASA selected eight university teams, including a joint team of researchers from the Colorado School of Mines and the University of Arizona, to develop technology to support efforts to find and harvest water at the moon’s south pole. Courtesy of NASA.

The Colorado School of Mines is exploring the concept of using lasers to power lights and machinery used for lunar exploration. To test the viability of using laser signals for power and communication in a lunar environment, the researchers will use femtosats, miniature satellites about the size of a stick of butter developed in the UArizona SpaceTREx Laboratory.

“The special thing about these guys [femtosats] is that they’re so low-cost that you can send tens, hundreds, maybe even thousands for the price of one regular satellite,” professor Jekan Thanga said. “Since the environment of the moon’s south pole is so unknown to us, disposable spacecraft are a perfect way to explore these regions without risking damage to more expensive spacecraft.”

Jekan Thanga, assistant professor of aerospace and mechanical engineering and head of the SpaceTREx Laboratory at the University of Arizona, is leading the University of Arizona portion of the Artemis Student Challenge. Courtesy of University of Arizona College of Engineering.
Jekan Thanga, assistant professor of aerospace and mechanical engineering and head of the SpaceTREx Laboratory at the University of Arizona, is leading the University of Arizona portion of the Artemis Student Challenge. Courtesy of University of Arizona College of Engineering.

In the proposed mission, a lander-mounted laser will touch down on the surface of the moon and launch the femtosats to different points on the lunar surface using a jack-in-the-box-like mechanism. The femtosats will receive the signal from the laser and transmit it back to demonstrate the validity of using the laser for communication.

“Students are actually building an entire system, which is very rare to do, particularly in the field of aerospace,” Thanga, who is head of the SpaceTREx Laboratory, said. “Our project is a steppingstone to building up the necessary technologies to prospect and extract water on the lunar surface.”

Photonics.com
Mar 2020
GLOSSARY
astronomy
The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
Research & TechnologyeducationAmericasUniversity of Arizonalaserslight sourcesopticsTest & MeasurementastronomyaerospaceNASAsatellitesFemtoSatsfree-space optical communicationsSensors & Detectors

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.