Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Light Damps 2-D Semiconductor Conductivity

Facebook Twitter LinkedIn Email Comments
CAMBRIDGE, Mass., Nov. 7, 2014 — While light enhances the conductivity of most semiconductors, it has the opposite effect on 2-D molybdenum disulfide.

A team from MIT and Harvard University discovered the phenomenon, in which intense laser pulses reduced by about two-thirds the conductivity of a three-atom-thick MoS2 crystal structure. The photoconductivity response was measured using time-delayed terahertz spectroscopy.

“By measuring the transmission of the terahertz radiation through the material, we can extract its electrical conductivity,” said MIT professor Dr. Nuh Gedik. “This approach is more convenient than conventional methods that attach electrical contacts to the samples and measure the current.”

The crystal structure of MoS2 is shown in blue and yellow. When it is hit with a burst of laser light, electrons and holes are freed and form trions, shown in orange and green. Courtesy of Jose-Luis Olivares/MIT.

Optical illumination causes more electrostatic interactions between charge carriers in 2-D materials than in 3-D materials. In this case, the result was the creation of bound states made of up two electrons and one hole — called trions. Each trion has the same net charge as an electron but roughly three times the mass.

“Their much heavier mass dulls their response to the electric field, and lowers the material’s conductivity,” said MIT postdoctoral researcher Joshua Lui.

Trions are known to be unstable and usually appear only at very low temperatures. In MoS2, the trionic effect was strong enough to be observed at room temperature using terahertz spectroscopy, Lui said.

The findings could lead to development of “room-temperature excitonic devices” that could be controlled wirelessly, the researchers said.

The research was funded by the U.S. Department of Energy and the National Science Foundation. The research was published in Physical Review Letters (doi: 10.1103/PhysRevLett.113.166801).

For more information, visit
Nov 2014
The conductivity increase exhibited by some nonmetallic materials, resulting from the free carriers generated when photon energy is absorbed in electronic transitions. The rate at which free carriers are generated, the mobility of the carriers, and the length of time they persist in conducting states (their lifetime) are some of the factors that determine the amount of conductivity change.
Research & TechnologymaterialslasersAmericassemiconductorsMITHarvard Universitymolybdenum disulfideMoS2Nuh GediktrionsJoshua Luiterahertz spectroscopyphotoconductivity

view all
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.