Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Light Ions for Fast Ignition of Fusion Fuels

Facebook Twitter LinkedIn Email Comments
WASHINGTON, May 23, 2011 — Because of greater efficiency and ease of production, light ions such as lithium or carbon have become the focus for fast ignition of fusion fuels.

The fast ignition concept is an alternative approach to nuclear fusion energy. In the fast ignitor scenario, a high-energy particle beam, driven by an ultrashort-pulse laser, is deposited into a precompressed deuterium-tritium fuel capsule, creating a "hot spot" with temperature and density parameters suitable for ignition, approximately 10 keV.

Initially, the easiest path for ignition was taken using electrons, but it was soon recognized that numerous problems exist, such as instabilities. The next logical step was to use ions, more specifically, protons. Subsequent experiments demonstrated that protons could be accelerated to relevant energies with conversion efficiencies of 5 to 10 percent, and they were proposed as an alternative to relativistic electrons. However, the number of protons required for fast ignition is in order of magnitude two times greater than that of light ions that have a conversion efficiency of laser energy into ions of up to 25 percent.

"Presently, all efforts in the direction of fast ignition focus entirely on protons, but this continues to be plagued by problems," said Dr. Jack Davis, a scientist at the Naval Research Laboratory Plasma Physics Div. "Our research strongly indicates that the use of light ions, heavier than protons, in the lithium to aluminum range is a path in the right direction for ignition."

For ions of the appropriate range, the beam energy can be deposited directly in the fuel, with high efficiency. In general, ion beams offer the advantage of more localized energy deposition, improved beam focusing, straight line trajectory while traversing the deuterium-tritium fuel, maximum energy deposition at the end of their range, and suppression of the various kinds of instabilities.

The ion stopping power — the gradual energy loss of fast particles as they pass through matter — results in a quadratic increase in the required ion kinetic energy relative to atomic number, but a decreasing number of these ions is needed to deliver the fast ignition hot spot energy, translating into a decreased irradiated spot size on the coupling target. The ionization density (number of ions per unit of path length) produced by a fast charged particle along its track increases as the particle slows down. It eventually reaches a maximum called the Bragg peak close to the end of its trajectory. After that, the ionization density dwindles quickly to insignificance.
Other considerations, such as tailoring the ion energy and angular distribution, which are responsible for ion beam focusing and energy density deposition in time and space, may turn out to be more important for the practical realization of the fast ignition.

For more information, visit:
May 2011
AmericasBasic Sciencedeuterium-tritium fuel capsuleDr. Jack Davisenergyfast ignition fusion fuelshigh-energy particle beamlight ionslight sourcesNaval Research Laboratory Plasma Physics Divisionnuclear fusion energyprotonsResearch & Technologyultrashort pulse laserWashington D.C.lasers

view all
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.