Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB

Light Links Graphene, Gallium

Facebook X LinkedIn Email
BRAUNSCHWEIG, Germany, Sept. 18, 2009 – Using a light optical microscope, Physikalisch-Technische Bundesanstalt (PTB) scientists have succeeded in making graphene visible on gallium arsenide. Previously it has been possible only on silicon oxide.

Now that they are able to view the graphene layer, which is thinner than one-thousandth of a light wavelength, the researchers want to measure the electrical properties of their new material combination.

Graphene and gallium arsenide are considered top candidates for the future of electronics. Graphene is extremely thin, and its electronic properties are ideal because its electrons can move tremendously fast, making it the perfect partner for gallium arsenide, the semiconductor that allows electrical and optoelectronic components. Additionally, it is possible to produce gallium arsenide with an atomic-layer-smooth surface, which is well-suited as a support for graphene.

Graphene.jpg
The normally practically invisible single-carbon-atom layers can be made visible under a normal light (optical) microscope, if the support (layer) is designed as an anti-reflection filter. Single-layer graphene was identified inside the markings.

They use the principle of the anti-reflective layer – if on a material one superimposes a very thin, nearly transparent, layer of another material, the reflectivity of the lower layer changes clearly visibly. To make their lower layer of gallium arsenide (plus graphene atomic layer) visible, the PTB physicists chose aluminum arsenide (AlAs). However, it is so similar to gallium arsenide (GaAs) in its optical properties that they had to employ a few tricks: They vapor-coated not one but rather several wafer-thin layers.

Lumencor Inc. - Power of Light 4-24 MR

“Thus, even with optically similar materials, it is possible, in a manner of speaking, to ‘grow’ interference effects,” said Dr. Franz-Josef Ahlers, department head at PTB. “This principle is known from optical interference filters. We have adapted it for our purposes.”

First, Ahlers and his colleagues calculated the optical properties of different GaAs and AlAs layers and optimized the layer sequence such that they could expect a sufficiently good detectability of graphene. Following this recipe, they got down to action and, with the molecular beam epitaxial facility of PTB, accurately produced a corresponding GaAs/AlAs crystal atom layer. Then in the same procedure as with silicon oxide, it was overlaid with graphite fragments.

“Different from silicon but, as predicted by the calculation, although single carbon layers are no longer visible at all wavelengths of visible light, it is, however, possible, e.g., with a simple green filter, to limit the wavelength range such that the graphene is easily visible,” explained Ahlers.

In the photo, all lighter areas of the dark GaAs are covered with graphene. From the degree of lightening, it is possible to conclude the number of individual layers of atoms. The marked areas are “real,” that is, single-layer graphene. But next to them there are also two, three and multiple layers of carbon atoms, which also have interesting properties. This arrangement was confirmed again with another method, Raman spectroscopy.

Following such a simple identification with a normal light optical microscope, the further steps in the manufacture of electrical components from graphene surfaces are now possible without any difficulty. Thus the PTB scientists can now begin to accurately measure the electrical properties of the new material combination.

For more information, visit: www.ptb.de

Published: September 2009
Glossary
graphene
Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure: Graphene...
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
optoelectronics
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
aluminium arsenideantireflective layerBasic Scienceelectronic propertiesGaAs/AlAs crystal atom layergallium arsenidegraphenegraphene atomic layerindustriallightLight Optical Microscopelight wavelengthMicroscopyNews & Featuresoptical interference filtersoptoelectronicsphotonicsphotonics.comPhysikalisch-Technische BundesanstaltResearch & Technologysemiconductorsvisible light

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.