Search
Menu
Rocky Mountain Instruments - Laser Optics LB

Light Moves Nanostructures

Facebook X LinkedIn Email
With a bit of leverage, Cornell researchers have used a very tiny beam of light with as little as 1 mW of power to move a silicon structure up to 12 nm. That’s enough to completely switch the optical properties of the structure from opaque to transparent, they reported.

The technology could have applications in the design of microelectromechanical systems (MEMS) – nanoscale devices with moving parts – and micro-optomechanical systems, which combine moving parts with photonic circuits, said Michal Lipson, associate professor of electrical and computer engineering. Others involved in the study include postdoctoral researcher Gustavo Wiederhecker, and doctoral students Long Chen and Alexander Gondarenko.

Silicon_Nitride.jpg
Shown is a scanning electron micrograph of two thin, flat rings of silicon nitride, each 190 nm thick and mounted a millionth of a meter apart. Light is fed into the ring resonators from the straight waveguide at the right. Under the right conditions, optical forces between the two rings are enough to bend the thin spokes and pull the rings toward one another, changing their resonances enough to act as an optical switch. (Image: Cornell Nanophotonics Group)

Light can be thought of as a stream of particles exerting a force on whatever it strikes. The sun doesn’t knock you off your feet because the force is very small, but at the nanoscale, it can be significant.

“The challenge is that large optical forces are required to change the geometry of photonic structures,” Lipson explained.

But the researchers reduced the force required by creating two ring resonators – circular waveguides whose circumference is matched to a multiple of the wavelength of the light used – and by exploiting the coupling between beams of light traveling through the two rings.

A beam of light consists of oscillating electric and magnetic fields, and these fields can pull in nearby objects, a microscopic equivalent of the way static electricity on clothes attracts lint. This phenomenon is exploited in “optical tweezers” used by physicists to trap tiny objects.

Meadowlark Optics - Building system MR 7/23

The forces tend to pull anything at the edge of the beam toward the center.

When light travels through a waveguide whose cross section is smaller than its wavelength, some of the light spills over, and with it the attractive force. So parallel waveguides close together, each carrying a light beam, are drawn even closer, much like two streams of rainwater on a windowpane that touch and are pulled together by surface tension.

The researchers created a structure consisting of two thin, flat silicon nitride rings about 30 µm (millionths of a meter) in diameter mounted one above the other and connected to a pedestal by thin spokes. Think of two bicycle wheels on a vertical shaft, but each with only four thin, flexible spokes. The ring waveguides are 3 µm wide and 190 nm thick, and the rings are spaced 1 µm apart.
When light at a resonant frequency of the rings, in this case infrared light at 1533.5 nm, is fed into the rings, the force between the rings is enough to deform the rings by up to 12 nm, which the researchers showed was enough to change other resonances and switch other light beams traveling through the rings on and off. When light in both rings is in phase – the peaks and valleys of the waves match – the two rings are pulled together.

When it is out of phase, they are repelled. The latter phenomenon might be useful in MEMS, where an ongoing problem is that silicon parts tend to stick together, Lipson said.

An application in photonic circuits might be to create a tunable filter to pass one particular optical wavelength, Wiederhecker suggested.

The work is supported by the National Science Foundation (NSF) and the Cornell Center for Nanoscale Systems. Devices were fabricated at the Cornell Nanoscale Science and Technology Facility, also supported by NSF.

The research appears in the online edition of the journal Nature.

For more information, visit: http://www.cornell.edu/








Published: November 2009
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
optical tweezers
Optical tweezers refer to a scientific instrument that uses the pressure of laser light to trap and manipulate microscopic objects, such as particles or biological cells, in three dimensions. This technique relies on the momentum transfer of photons from the laser beam to the trapped objects, creating a stable trapping potential. Optical tweezers are widely used in physics, biology, and nanotechnology for studying and manipulating tiny structures at the microscale and nanoscale levels. Key...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
scanning electron micrograph
The picture formed by the scanning beam of electrons in a scanning electron microscope.
Alexander GondarenkoAmericaBiophotonicsFiltersGustavo WiederheckerLong Chenmagnetic fieldsMichal Lipsonmicro-electromechanical systemsmicro-optomechanical systemsnanonanostructuresNational Science FoundationNew YorkNews & Featuresoptical propertiesoptical switchoptical tweezersOpticsphotonic circuitsphotonicsResearch & Technologyscanning electron micrographsilicon nitride ring

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.