Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Light Sculpts 3-D Particles

Facebook X LinkedIn Email
Microparticles that have been sculpted to three dimensions using ultraviolet light could have many applications in medical diagnostics and tissue engineering, such as acting as probes to detect specific molecules like DNA or to release drugs or nutrients.

The new technique developed by engineers at the Massachusetts Institute of Technology offers unprecedented control over the size, shape and texture of the particles. It also allows researchers to design particles with specific chemical properties, such as porosity (a measure of the void space in a material that can affect how fast different molecules can diffuse through the particles).
MIT3D.jpg
MIT Materials Science and Engineering Department head Ned Thomas, left, professor of chemical engineering Patrick Doyle, and materials science postdoctoral associate Ji-Hyun Jang. (Photo: Donna Coveney/MIT)
“With this method, you can rationally design particles, and precisely place chemical properties,” said Patrick Doyle, associate professor of chemical engineering. Doyle is one of the authors of a paper on the work that appears in the Dec. 3 issue of the journal Angewandte Chemie, published by the German Chemical Society.

The research team started with a method that Doyle and his students reported in a 2006 issue of Nature Materials to create two-dimensional particles. Called continuous flow lithography, this approach allows shapes to be imprinted onto flowing streams of liquid polymers. Wherever pulses of ultraviolet (UV) light strike the flowing stream of small monomeric building blocks, a reaction is set off that forms a solid polymeric particle. They have now modified that method to add three-dimensionality.

This process can create particles very rapidly: Speeds range from 1000 to 10,000 particles per second, depending on the size and shape of the particles. The particles range in size from about a millionth of a meter to a millimeter.

The team's new process works by shining UV light through two transparency masks, which define and focus the light before it reaches the flowing monomers. The first mask, which controls the size and shape of the particles, is part of the technique reported last year by Doyle and his students. The second mask, which is based on MIT professor Edwin Thomas' work in multibeam lithography, adds three-dimensional texture and other physical traits, such as porosity.

DataRay Inc. - ISO 11146-Compliant
MITmicrofluidics.jpg
MIT researchers have reported a technique to create microparticles with a granular texture, shown here at three scales. (Image courtesy MIT)
The collaboration sprung from a conversation between Ji-Hyun Jang, a postdoctoral associate in Thomas' lab, and Dhananjay Dendukuri, a recent PhD recipient in Doyle's lab. They are also authors on the paper, along with Alan Hatton, the Ralph Landau Professor of Chemical Engineering Practice.

“It's very easy to integrate the (second) phase mask into the microfluidic apparatus,” said Thomas, Morris Cohen Professor of Materials Science and Engineering and head of the Department of Materials Science and Engineering. “Professor Doyle was controlling the overall shape, and now what we're doing is controlling these inner labyrinth networks.”

Adding inner texture is desirable because it increases the particles' surface-to-volume ratio, which means if the particle is loaded with probes, there are more potential binding sites for target molecules.

In a paper published in Science earlier this year, Doyle and MIT graduate student Daniel Pregibon showed that the particles can be used as probes to identify DNA and other molecules.

Other applications for the particles include tissue engineering. For example, they could form a scaffold that would both provide structural support for growing cells and release growth factors and other nutrients. The particles can be designed so diffusion occurs in a particular direction, allowing researchers to control the direction of nutrient flow.

The research was funded by the US Army Research Office through the MIT Institute for Soldier Nanotechnologies.

For more information, visit: www.mit.edu

Published: December 2007
Glossary
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
phase mask
In optics and photolithography, a phase mask refers to a device that modifies the phase of light waves passing through it. The phase mask is used to control the spatial distribution of the light's phase, which plays a crucial role in various optical applications, including imaging, interference, and patterning. Here are a few contexts in which the term "phase mask" is commonly used: Interference and diffraction: In interference and diffraction phenomena, a phase mask can be used to create...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
3-D microparticlesBiophotonicscellscontinuous flow lithographydefenseDNAEdwin Thomasenergyindustriallightmaterials sciencemicrofluidicMITnanoNews & FeaturesparticlesPatrick Doylephase maskphotonicsprobestissue engineeringtransparency masksUV

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.