Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Liquid Crystal Microlenses Enable 4D Imaging

Facebook Twitter LinkedIn Email
Researchers from Nanjing University have developed a portable, inexpensive, and easy-to-use microlens to acquire 4D images. 4D imaging provides 3D resolution as well as polarization information.

Wei Hu, Yan Qing Lu, and colleagues used liquid crystals, materials found in most electronic displays. With a self-assembly process, they patterned arrays of liquid crystal microlenses into concentric circles.
A concentric array of liquid crystal microlenses provides 4D information about objects. Scale bar, 20 µm. Credit of ACS Nano 2019, DOI: 10.1021/acsnano.9b07104.
A concentric array of liquid crystal microlenses provides 4D information about objects. Scale bar, 20 μm. Courtesy of ACS Nano 2019, DOI: 10.1021/acsnano.9b07104.

The researchers used a polarized optical microscope to image objects, such as a cross or the letter “E,” under different directions of linearly polarized light. Microlenses in the array imaged the object differently, depending on their distance from the object (depth) and the direction of polarized light, producing 4D information.

Light can become polarized by reflecting off objects that cause the lightwaves to undulate in a single plane. Unpolarized light, such as that from the sun, contains waves that move in every direction. Detecting polarized light can reveal information; for example, cancer cells can reflect polarized light differently than healthy tissues.

Although the resolution needs to be improved, the technique could someday be used in applications such as medical imaging, communications, displays, information encryption, and remote sensing, the researchers said.

The research was published in ACS Nano (

Photonics Spectra
Feb 2020
liquid crystal
A type of material that possesses less geometrical regularity or order than normal solid crystals, and whose order varies in response to alterations in temperature and other quantities. Liquid crystals are characterized by phase varieties, including cholesteric, nematic and smectic. The optical properties of liquid crystals are familiar from their use in displays, known as LCDs.
Research & Technologyopticsmicrolens4D imagingliquid crystalpolarized lightNanjing UniversityimagingTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.