Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Material Overcomes Plasmon Damping

Facebook Twitter LinkedIn Email Comments
BARCELONA, Spain, Jan. 13, 2015 — High-quality graphene sandwiched between two films of hexagonal boron nitride allows plasmons to propagate over relatively large distances without losing energy.

A research team led by the Institute Of Photonic Sciences (ICFO) studied the material using near-field microscopy, finding that plasmon damping was much less than in graphene alone.

Propagating plasmons in a boron nitride heterostructure.
Propagating plasmons in a boron nitride heterostructure. Courtesy of ICFO.

The combined materials could enable miniaturized optical circuits for faster signal processing and computing and more efficient sensing, the researchers said.

“It is remarkable that we make light move more than 150 times slower than the speed of light, and at length scales more than 150 times smaller than the wavelength of light,” said ICFO professor Dr. Frank Koppens. “In combination with the all-electrical capability to control nanoscale optical circuits, one can envision very exciting opportunities for applications.”

“According to theory, the interactions between light, electrons and the material system are now very well understood, even at a fully microscopic level,” Dr. Marco Polini of the Scuola Normale Superiore in Pisa, Italy. “It is very rare to find a material that is so clean and in which this level of understanding is possible.”

The research was published in Nature Materials (doi: 10.1038/NMAT4169).

For more information, visit
Jan 2015
Calculated quantity of the entire longitudinal wave of a solid substance's electron gas.
The study of how light interacts with nanoscale objects and the technology of applying photons to the manipulation or sensing of nanoscale structures.
Research & TechnologyEuropeSpainItalyICFOplasmonplasmonicsnanophotonicsgrapheneboron nitrideInstitute of Photonic SciencesFrank KoppensMarco PoliniScuola Normale Superiore

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.