Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Materials-Based Solution Accelerates Photonic Computing

Facebook Twitter LinkedIn Email
Researchers at the University of Central Florida (UCF) have introduced a previously undescribed class of topological insulators that could lead to more power efficient photonic circuits in a demonstration that is poised to advance quantum computing.

The UCF design diverges from traditional design approaches that introduce topological phases by using tailored, discrete coupling protocols or helical lattice motions. To improve the robustness of the topological features, the UCF team instead used connective chains with periodically modulated onsite potentials. It developed a phase structure to host multiple nontrivial topological phases associated with both Chern-type and anomalous chiral states. The team then laser-etched the chained, honeycomb lattice design onto silica.

Nodes in the design allowed the researchers to modulate the current without bending or stretching the photonic wires. This in turn allowed greater control over the flow of light — and thus, more control over the information that flows into a photonic circuit.

The researchers confirmed their findings using imaging techniques and numerical simulations. In experiments carried out in photonic waveguide lattices, they discovered a strongly confined helical edge state that, owing to its origin in bulk flat bands, could be set into motion in a topologically protected fashion or halted at will, without compromising its adherence to individual lattice sites.

The topological insulator design, which the researchers call bimorphic, supports longer propagation lengths for information packets because it minimizes power losses. The researchers believe that by providing more control and richer features than traditional modulation techniques, their approach to designing bimorphic topological insulators could help bring light-based computing closer to reality.


“Bimorphic topological insulators introduce a new paradigm shift in the design of photonic circuitry by enabling secure transport of light packets with minimal losses,” researcher Georgios Pyrialakos said.

The UCF-developed photonic material overcomes drawbacks of contemporary topological designs that offer fewer features and less control, while supporting longer propagation lengths for information packets by minimizing power losses. Courtesy of Adobe Stock.
The UCF-developed photonic material overcomes drawbacks of contemporary topological designs that offer fewer features and less control, while supporting longer propagation lengths for information packets by minimizing power losses. Courtesy of Adobe Stock.
Next steps for the team will include incorporating nonlinear materials into the insulator’s lattice. This step could give the researchers active control of topological regions, allowing them to create custom pathways for light packets, professor Demetrios Christodoulides said.

As the size of photonic circuits continues to shrink, topological insulators could be used to fit more processing power into a single circuit without overheating it. In the future, topological insulators could be used to protect and harness the power of fragile quantum information bits to realize quantum processing power hundreds of millions of times faster than conventional computers.

The research was published in Nature Materials (www.doi.org/10.1038/s41563-022-01238-w).

Photonics Spectra
Aug 2022
GLOSSARY
optical communications
The transmission and reception of information by optical devices and sensors.
lattice
A regular spatial display of points representing, for example, the sites of atoms in a crystal.
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
quantum optics
The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
materialsopticsphotonic integrated circuitPICsoptical communicationsCommunicationstopological photonicsbimorphslight propertiestopological insulatorssilicalatticequantumquantum opticsintegrated photonicsAmericasResearch & TechnologyeducationUniversity of Central FloridaTechnology News

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.