Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
Coming Soon: The NEW

Materials Expand Volumetric 3D Printing

Facebook Twitter LinkedIn Email
LIVERMORE, Calif., Nov. 2, 2020 — A new class of materials adapted by researchers at Lawrence Livermore National Laboratory (LLNL) enable nearly instant production through volumetric 3D printing and expanding the range of material properties achievable with the technique.

The materials are called thiol-ene resins, and they can be used with LLNL’s volumetric additive manufacturing (VAM) techniques, including computed axial lithography (CAL), which produces objects by projecting beams of 3D patterned light into a vial of resin. As light cures the liquid resin into a solid at the desired points in the volume, the vial spins. The resin is drained, leaving the 3D object behind. The whole process takes place in a matter of seconds. 

Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore researchers were able to build tough and strong, as well as stretchable and flexible, objects nearly instantly from a class of materials known as thiol-ene resins. Courtesy of Maxim Shusteff/LLNL.

Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore researchers were able to build tough, strong, stretchable, and flexible objects nearly instantly from a class of materials known as thiol-ene resins. Courtesy of Maxim Shusteff/LLNL.

The researchers worked previously with acrylate-based resins that produce brittle objects using the CAL process. The new resin, created through the careful balancing of three different types of molecules, is more versatile, giving the  researchers a flexible design space and a wider range of mechanical performance. The researchers were able to build tough and strong materials, as well as stretchable and flexible objects using a custom VAM printer at LLNL.

“These results are a key step toward our vision of using the VAM paradigm to significantly expand the types of materials that can be used in light-driven 3D printing,” said LLNL engineer Maxim Shusteff, principal investigator and head of a Laboratory Directed Research and Development project in advanced photopolymer materials development.

The researchers also demonstrated the first example of a method for the design of the 3D energy dose delivered into the resin to predict and measure it. This allowed the scientists to successfully print 3D structures in the thiol-ene resin through tomographic volumetric additive manufacturing. The demonstration created a common reference for controlled 3D fabrication and for comparing resin systems, the researchers said.

The work, they said, represents a significant advancement for volumetric additive manufacturing as they work toward producing high-performance printed engineering polymers, with particular emphasis on using thiol-ene in biological scaffolds. Thiol-ene materials have shown promise for applications including adhesives, electronics, and biomaterials, the researchers said.

“By implementing a nonlinear threshold response into a broad range of chemistries, we plan to print with resins such as silicones or other materials that impart functionality,” said LLNL materials engineer Caitlyn Cook.

The researchers intend to improve the agreement between computational models and experiments and apply photochemical behavior to the computed tomography reconstructions that produce the 3D models used to build objects.

The research was published in Advanced Materials (
Nov 2020
A material whose molecular structure consists of long chains made up by the repetition of many (usually thousands) of similar groups of atoms.
Research & TechnologyAmericasMaterials3d printingLawrence LivermoreLawrence Livermore National LabLawrence Livermore National Laboratorylithographycomputed axial lithographyvolumetric additive manufacturingvolumetric 3D printingphotochemicalpolymerpolymersresinresinsthiol groupthiol-enebiomaterialbiomaterialsbiomaterials research

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.