Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Metamaterial focuses sound waves like a camera lens

Facebook Twitter LinkedIn Email Comments

A computationally tested metamaterial that can manipulate a variety of acoustic waves with one simple device holds promise for various acoustic applications, including medical ultrasound, higher sensitivity surface acoustic wave sensors and higher Q factor resonators.

Man-made optical metamaterials have been studied over the past decade for applications including perfect lenses and cloaking. The basic principles of optical metamaterials apply to acoustic metamaterials: Artificial structures are created in patterns that bend the acoustic wave onto a single point and then refocus the wave into a wider or narrower beam, depending on the direction of travel through the proposed acoustic beam aperture modifier.

The acoustic beam aperture modifier can effectively shrink or expand the aperture of an acoustic beam with minimum energy loss and waveform distortion. With such an acoustic lens, the need for a series of expensive transducers of various sizes is eliminated. Courtesy of Sz-Chin “Steven” Lin, Penn State.

“The acoustic beam aperture modifier is a brand-new application of acoustic metamaterials that has not been built before,” Sz-Chin “Steven” Lin, a postdoctoral scholar at The Pennsylvania State University, told BioPhotonics.

Lin and colleagues at the university’s Materials Research Institute built the novel device on gradient-index (GRIN)phononic crystals – in this case, an array of steel pins embedded in epoxy in a particular pattern. The steel pins, or obstacles, slow the acoustic wave speed so that they can be bent into curved rays.

“The acoustic beam aperture modifier is built upon gradient-index phononic crystals which are artificially engineered periodic structures most famous for their ability to guide the propagation of acoustic waves along curved trajectories, known as the acoustic mirage effect,” said Lin, lead author of the report, which appeared in the Journal of Applied Physics (

Although other types of acoustic metamaterials could focus and defocus an acoustic beam to achieve aperture modification, the Penn State device is smaller in size by at least half and offers energy conservation of up to 83 percent of acoustic energy after modification.

“Compared to existing negative-refraction-based metamaterial lenses, our GRIN-based metamaterial lens possesses several advantages,” Lin said. “First, the GRIN lens can operate over a wide frequency band, while negative-refraction-based lenses usually operate within a small range.

“Second, a GRIN lens can be coupled with acoustic transducers and can effectively redirect paraxial incident acoustic waves to a small focal spot – the position of this spot is determined by the adjustable gradient coefficient. In contrast, with negative-refraction-based phononic crystal lenses, one must focus select diverging waves to a long focal zone.”

Lastly, GRIN lenses can be made much smaller than negative-refraction-based lenses and can be seamlessly integrated with existing millimeter-scale acoustic systems, he said.

For the past several years, Lin has worked to apply optics concepts such as GRIN lensing to the phononic crystals. He has applied his GRIN concept to various fields, including optofluidics and nanophotonics, to obtain optical lenses.

Currently, scientists and surgeons must have transducers of multiple sizes to produce acoustic waves with different apertures. With the new device, the desired aperture can be attained easily by changing the modifier attached to the transducer.

The device will benefit almost all sonic and ultrasonic applications, including evaluations and imaging. It also could provide more accurate and efficient high-intensity focused ultrasound therapies, a noninvasive heat-based technique targeted at a variety of cancers and neurological disorders.

The team is working on a prototype based on this design.

Oct 2012
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
1. An instrument that can convert energy from one form to another; e.g., a photodetector that converts modulated light waves to electrical currents. 2. A device that enables energy to flow from one transmission system to another.
ultrasonic imaging
The formation and display of three-dimensional images by ultrasonic energy. In one technique, the energy pulses from an ultrasonic transducer scan the object through a liquid medium and, receiving the reflected pulses, analyze them. The recorded data are replayed and displayed on a cathode-ray tube screen, and the image may be viewed from several perspectives.
acoustic metamaterialsacoustic wave sensorsAmericasaperturesBiophotonicsBioScancamera lenscancer detectionhigh-intensity focused ultrasoundimaginglensesmetamaterialsNewsopticsPenn StatePennsylvaniaphononic crystalsphotonicsSensors & DetectorsSz-Chin Steven Lintransducerultrasonic applicationsultrasonic imagingultrasoundultrasound surgery

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.