Metasurface Helps to Conquer Counterfeiting

Facebook X LinkedIn Email
Researchers at Pohang University of Science and Technology (POSTECH) have developed an anticounterfeiting and tampering prevention system using ultraviolet (UV) and visible light. The technology uses metasurfaces — it in fact resolves a long-standing issue of the UV light operation of metasurfaces  — and is expected to have applications in various industrial sectors, according to the researchers. 

Led by Junsuk Rho, a professor in the departments of Mechanical and Chemical Engineering, and Ph.D. candidate Joohoon Kim, the team developed an optical encryption platform that works simultaneously in the visible and UV regions.
Illustration of the dual-band vectorial metahologram that works in ultraviolet and visible light, respectively. Courtesy of POSTECH.
Illustration of the dual-band vectorial metahologram that works in ultraviolet and visible light. POSTECH researchers developed an anticounterfeiting system using two light bands. The technology uses stacked metasurfaces composed of subwavelength structures. Courtesy of POSTECH.
For the metasurface in the design to work, it must be composed of subwavelength structures — smaller than the wavelength of light. However, the wavelength of UV light is very short, making it difficult to fabricate a suitable structure. Additionally, silicon — which is frequently used to create metausrfaces — has a propensity to absorb UV light.

To overcome these issues, the team adjusted the physical properties of silicon nitride to reduce its tendency to absorb UV light. Using this material, the team fabricated a metahologram in which an image clearly appears when it is irradiated with UV light. Using the electron beam lithography overlay method, the team combined the two metaholograms that work in the UV and visible regions to create an anticounterfeiting device that displays a unique product number.

When a UV or visible laser is irradiated on the device, images with disparate polarization states are displayed, respectively. The hologram that appears when a visible light laser is irradiated acts as a key, and when this key information is input into the ultraviolet polarizer and irradiated with UV light, certain numbers disappear. These numbers are unique.

The system is difficult to decrypt because it uses the invisible ultraviolet light and reduces the chances of exposing the password or code that can confirm forgery or falsification. In addition, by stacking two metasurfaces, the number of images and information that can be stored is markedly increased.

“We were able to create a higher performing optical encryption system utilizing the invisible ultraviolet characteristics,” Rho said. “This study will serve as the basis for opening up the metasurface research to the ultraviolet regime, from being confined to the long wavelength region.”

According to Rho, he and the team are reviewing the technology with relevant organizations for use in future security applications such as paper bills, passports, and more.

The research was published in ACS Nano (

Published: March 2022
Holography is a technique used to capture and reconstruct three-dimensional images using the principles of interference and diffraction of light. Unlike conventional photography, which records only the intensity of light, holography records both the intensity and phase information of light waves scattered from an object. This allows the faithful reproduction of the object's three-dimensional structure, including its depth, shape, and texture. The process of holography typically involves the...
Metasurfaces are two-dimensional arrays of subwavelength-scale artificial structures, often referred to as meta-atoms or meta-elements, arranged in a specific pattern to manipulate the propagation of light or other electromagnetic waves at subwavelength scales. These structures can control the phase, amplitude, and polarization of incident light across a planar surface, enabling unprecedented control over the wavefront of light. Key features and characteristics of metasurfaces include: ...
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
holographyResearch & TechnologyeducationAsia PacificPostechPohang University of Science & TechnologyMaterialsmetasurfacesOpticsstructuresUV lightforgeryforgery detectioncounterfeitinganti-counterfeitingdetectiondetection analysisnanodevicesoptical encryptionTechnology News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.