Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Microwaveguides Could Speed Control of Light Flux in PICs

Facebook Twitter LinkedIn Email
NIZHNY NOVGOROD, Russia, Jan. 2, 2019 — In order to increase the speed with which photonic integrated circuits (PICs) control light flux, researchers are investigating new materials with high optical nonlinearity. Among the promising materials are microwaveguides based on graphene, a material in which charge carrier concentrations can be effectively controlled using optical pumping or applied bias voltage. The work of a team from the Lobachevsky State University of Nizhny Novgorod—National Research University (UNN, also known as Lobachevsky University) could provide a new perspective on the dynamics of waves in nonstationary microwaveguides that could contribute to advances in PICs.

While exploring potential materials for creating PICs, the UNN team developed a theory for the conversion of light waves propagating over the surface of graphene, when the concentration of electrons in graphene changes over time. The interaction of electrons with the light field was precisely taken into account. As a result of their study, the researchers ruled out the possibility of amplifying light waves by changing the concentration of electrons.

Surface Plasmon propagating along a graphene sheet, Lobachevsky University.

(a) Illustration of a surface plasmon propagating along a graphene sheet at t < 0. (b) Time dependence of the graphene carrier density. (c) Dispersion diagram showing the frequency transformation of the initial plasmon when the carrier density decreases from N1 to N2. Courtesy of Lobachevsky University.

The researchers took a general theoretical approach to calculate the graphene plasmon transformation after rapid changes of the Fermi level and carrier density, basing their approach on solving the Maxwell equations supplemented by the microscopic current equation. They derived formulas for the amplitudes of the transmitted and reflected plasmons after a rapid carrier density drop. The relation of these amplitudes and the Fourier transformed finite-difference time-domain (FDTD) fields was established. The results of the analytical and FDTD approaches refuted claims of plasmon amplification under rapid carrier changes that have appeared in recent theoretical studies, the researchers said. The team believes that the theoretical and computational approaches it presents could form a basis of time-varying electromagnetics of graphene plasmonics.

Professor Alexei Maslov said, “Our study is aimed at developing the physical principles of ultrafast photon control in integrated microchips, in other words, at improving the performance of microcircuits and microchips used in microelectronics and nanoelectronics.”

The research was published in Optica, a publication of The Optical Society (
Jan 2019
A sub-field of photonics that pertains to an electronic device that responds to optical power, emits or modifies optical radiation, or utilizes optical radiation for its internal operation. Any device that functions as an electrical-to-optical or optical-to-electrical transducer. Electro-optic often is used erroneously as a synonym.
Calculated quantity of the entire longitudinal wave of a solid substance's electron gas.
Research & TechnologyeducationLobachevsky UniversityEuropeintegrated photonicsopticsmaterialsgrapheneoptoelectronicsphotonic integrated circuitsPICsplasmonplasmonicsmicroelectronicsnanoelectronicslight waveslight sources

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.