Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

Miniature Lens Could Enable Fast Transfer of Quantum Information

Photonics Handbook
A tiny camera lens, invented by an international research team led by the Australian National University (ANU), could one day be used to link quantum computers to an optical fiber network. The lens is made of a silicon film with millions of nanostructures that form a transparent metasurface.

The team believes that the lens, which is 100 times thinner than a human hair, could enable the efficient detection and transmission of information encoded in quantum light, once quantum technology is fully realized.

Kai Wang holding a sample that has multiple metasurface camera lenses. Courtesy of Lannon Harley, ANU.
Kai Wang holding a sample that has multiple metasurface camera lenses. Courtesy of Lannon Harley, ANU.

The team demonstrated that its lens could image multiple projections of quantum states simultaneously with a single metasurface, thus enabling a robust reconstruction of multiphoton polarization-encoded states. One- and two-photon states were reconstructed through nonlocal photon correlation measurements with polarization-insensitive click detectors positioned after the metasurface. The scalability to higher photon numbers was established theoretically.

“It is the first of its kind to image several quantum particles of light at once, enabling the observation of their spooky behavior with ultrasensitive cameras,” said professor Andrey Sukhorukov.

Researcher Kai Wang said that one challenge was making a device for portable quantum technologies.

“Our device offers a compact, integrated and stable solution for manipulating quantum light,” he said. “It is fabricated with a similar kind of manufacturing technique used by Intel and NVIDIA for computer chips.”

The work shows that nonclassical multiphoton interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces, and that it may be feasible to use ultrathin quantum metadevices to manipulate and measure multiphoton quantum states. The device could have applications in free-space quantum imaging and in quantum communications.

The research was published in Science (doi:10.1126/science.aat8196).

GLOSSARY
lens
A transparent optical component consisting of one or more pieces of optical glass with surfaces so curved (usually spherical) that they serve to converge or diverge the transmitted rays from an object, thus forming a real or virtual image of that object.
camera
A light-tight box that receives light from an object or scene and focuses it to form an image on a light-sensitive material or a detector. The camera generally contains a lens of variable aperture and a shutter of variable speed to precisely control the exposure. In an electronic imaging system, the camera does not use chemical means to store the image, but takes advantage of the sensitivity of various detectors to different bands of the electromagnetic spectrum. These sensors are transducers...
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
Research & TechnologyAsia-PacificeducationAustralian National Universityimaginglenscamerametasurfacemetalensquantummultiphoton interference

Comments
PHOTONICS BUYERS' GUIDE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.