Nanowires Can Be Tuned to Range of Wavelengths for Optoelectronics

Facebook X LinkedIn Email
A research team at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with researchers at Technische Universität (TU) Dresden and Deutsches Elektronen-Synchrotron (DESY) in Hamburg, has produced nanowires with operating wavelengths that can be tuned over a wide range by altering the structure of the nanowire’s shell. Fine-tuned nanowires could take on several roles in an optoelectronic component, making the component more powerful, cost-effective, and easier to integrate.

The researchers grew gallium arsenide nanowires epitaxially on silicon substrates. Then they enclosed the wafer-thin wires in another layer of material to which they added indium. The mismatched crystal structure of the materials was intended to induce a mechanical strain in the wire core that would change the electronic properties of the gallium arsenide — for example, cause the bandgap to become smaller or the electrons to become more mobile. To magnify this effect, the scientists kept adding indium to the shell, increasing the shell’s thickness.

Semiconductor nanowires can be tuned over wide energy ranges, HZDR.

Cross-section of a nanowire featuring a gallium arsenide core, an indium aluminum arsenide shell, and an indium gallium arsenide capping layer (gallium is shaded blue, indium red, and aluminum cyan). The image was produced by energy-dispersive x-ray spectroscopy. Courtesy of HZDR/R. Huebner.

The gallium arsenide core sustained unusually large tensile strain, and the magnitude of the strain could be engineered by varying the composition and thickness of the shell. At this level of strain, the researchers expected to see disorders occurring in the semiconductors — defects or bends in the wire core, for example. They believe that the experimental conditions were the reason for the absence of such disorders: First, they grew extremely thin wires (around 5000 times finer than a human hair). Second, they produced the wire shell at very low temperatures. The surface diffusion of atoms was more or less frozen, forcing the shell to grow evenly around the core.

“What we did was take a known effect to extremes,” researcher Emmanouil Dimakis said. “The 7% of strain achieved was tremendous.” The team confirmed its discovery by conducting several independent series of measurements at facilities in Dresden and at the high-brilliance x-ray light sources PETRA III in Germany and Diamond in England.

The researchers next examined what triggered the extremely high strain in the nanowire core, and how this could be applied. They found that the high strain let them shift the bandgap of the gallium arsenide semiconductor to very low energies, making it compatible even for wavelengths of fiber optic networks — a spectral range that could previously only be achieved using alloys containing indium. The nanowires exhibited a reduction of their bandgap by up to 40% when overgrown with lattice-mismatched indium gallium arsenide or indium aluminium arsenide shells. 

The researchers believe that the resulting bandgap reduction could make gallium arsenide nanowires suitable for photonic devices across the near-infrared (NIR) range, including telecom photonics at 1.3 μm and potentially 1.55 μm, with the additional possibility of monolithic integration in silicon-CMOS chips. “Scientists have been aware of gallium arsenide as a material for years, but nanowires are special. A material may exhibit completely new properties at the nanoscale,” Dimakis said.

The research was published in Nature Communications (   

Published: July 2019
Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
Research & TechnologyeducationEuropeHelmholtz-Zentrum Dresden-RossendorfnanophotonicsplasmonicsnanowiresMaterialsnanosemiconductorsoptoelectronicstunable wavelengths

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.