Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

'Nearly Perfect' Crystals Could Advance Nano-Optoelectronics

Facebook Twitter LinkedIn Email Comments
DRESDEN, Germany, July 25, 2014 — Embedding “nearly perfect” semiconductor crystals in silicon nanowires solves a problem in the production of nano-optoelectronic components, according to a team of European researchers.

The crystals — made of indium arsenide (InAs) — possess extremely high electron mobility and could be useful in improving silicon-based CMOS technology, the team said. To date, integrating such crystals into nanowires has been difficult because crystal lattice mismatch always led to numerous defects.  

An energy-dispersive x-ray spectroscope image shows an InAs nanocrystal (green-cyan) integrated in a silicon nanowire (blue). A sleeve of silicon oxide (red) can be seen outside the wire. Courtesy of TU Vienna and the Swiss Federal Institute of Technology.

The researchers used liquid-phase epitaxy to get around the problem. First, they introduced a determined number of atoms precisely into the liquid nanowires via ion beam synthesis. Next, they annealed the nanowires for 20 ms with a xenon flash lamp, creating a 15-nm-thick silicon oxide shell that maintained the form of the liquid nanowire.

“The atoms diffuse in the liquid-silicon phase so rapidly that within milliseconds they form flawless monocrystals delineated from their surroundings with nearly perfect interfaces,” said lead researcher Dr. Wolfgang Skorupa of Helmholtz-Zentrum Dresden-Rossendorf.

Going forward, the scientists want to introduce other compound semiconductors into silicon nanowires and also optimize the size and distribution of the crystals.

Researchers at the Vienna University of Technology, Maria Curie-Sklodowska University Lublin in Poland and the Swiss Federal Institute of Technology in Lausanne also collaborated on the project. The work was published in Nano Research (doi: 10.1007/s12274-014-0536-6).

For more information, visit
Jul 2014
A sub-field of photonics that pertains to an electronic device that responds to optical power, emits or modifies optical radiation, or utilizes optical radiation for its internal operation. Any device that functions as an electrical-to-optical or optical-to-electrical transducer. Electro-optic often is used erroneously as a synonym.
A rare gas used in small high-pressure arc lamps to produce a high-intensity source of light closely resembling the color quality of daylight.
AustriaCMOScrystalsdefectselectron mobilityEuropeflash lampHelmholtz-Zentrum Dresden-RossendorfInAsindium arsenideLausannenanonanowiresoptoelectronicsPolandResearch & Technologysemiconductorssiliconsilicon oxideSwiss Federal Institute of TechnologySwitzerlandVienna University of TechnologyXenoncrystal lattice mismatchliquid-phase epitaxyion beam synthesisannealWolfgang SkorupaMaria Curie-Sklodowska University LublinNano ResearchEuro News

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.