Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

New Devices Could Realize Optical Microprocessing

Facebook Twitter LinkedIn Email Comments
The development of two new devices — a modulator and a tunable filter — that are energy efficient and were built using a standard IBM advanced CMOS process represents a major milestone in optical microprocessing, researchers say.

As part of DARPA’s Photonically Optimized Embedded Microprocessors (POEM) project, researchers from the University of Colorado, Boulder, MIT and the University of California, Berkeley are working to demonstrate that low-power photonic devices can be fabricated using standard chip-making processes. 

Microscope image of the full chip fabricated in IBM’s CMOS process. Courtesy of MIT.

These two devices are key components for the communication link between a computer’s central processing unit and its memory. The modulator converts electrical signals into optical signals, while the tunable filter can pick out light signals of particular frequencies, allowing it to select a signal from multiple frequencies, each of which carries data. Used in conjunction with a photodetector, the filter converts optical signals to electrical signals.

“This is a really nice first step for silicon photonics to take over some areas of technology where electronics has really dominated and to start building complex electronic/photonic systems that require dense integration,” said researcher Mark Wade of the UC-Boulder.

Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density. This allows for the transmission of more information using a smaller amount of space, as different optical signals can share the same optical wire. Contrarily, sending multiple electrical signals either requires multiple electronic wires or schemes that require more chip space and energy, limiting computational power, Wade said.

The researchers anticipate that photonics will be at least 10 times more energy efficient than electronics.

For more information, visit

Photonics Spectra
May 2014
See acousto-optic modulator; electro-optic modulator.
A device used to sense incident radiation.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
AmericasBerkeleyCMOSCommunicationscomplementary metal oxide semiconductorcomputingDARPAdefensedeviceselectronsenergyFiltersIBMindustrialMassachusetts Institute of TechnologymicroprocessorsMITmodulatoropticsphotodetectorphotonicsphotonsResearch & TechnologyTech Pulsetunable filterUniversity of CaliforniaUS Defense Advanced Research Projects AgencyWashingtonPhotonically Optimized Embedded MicroprocessorsPOEMUniversity of Colorado-Boulderchip-to-chip communicationoptical wire

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.