Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Optical Fiber Sensors Detect Cryogenic Hydrogen

Photonics Spectra
Feb 2007
Single-walled carbon nanotube-based overlays prove effective.

Lauren I. Rugani

The low flammability limit and ignition energy of molecular hydrogen make it an ideal fuel source for rocket engines. However, these combustion properties also are a risk to human safety and call for a mechanism to detect low concentrations of hydrogen at cryogenic temperatures. Optical fiber sensors work well in such conditions because they are highly sensitive and nonflammable.

To this end, researchers from the University of Sannio in Benevento, the National Agency for Atomic Energy in Brindisi and the Institute for Composite and Biomedical Materials in Portici, all in Italy, and the University of Madrid in Spain have fabricated silica optical fiber sensors coated with two types of single-walled carbon nanotube-based materials.

The group coated the distal ends of two silica optical fibers with two and six monolayers of close-end nanotubes, respectively, and one with two monolayers of open-end nanotubes, and placed the sensors into a chamber at 113 K. Pulses of argon gas with decreasing concentrations of hydrogen flowed through the chamber to evaluate the sensors’ responses. Adsorption of hydrogen molecules altered the thickness and dielectric constant of the coating, affecting the optical reflectance at the fiber/film interface and, therefore, the reflected signal at the photodetector.

For the probe with two close-end nanotube monolayers, the reflectance did not differ significantly for varying concentrations of hydrogen. The probe demonstrated a response time of four minutes and a complete recovery time of nine minutes.

When the number of monolayers was increased to six, the reflectance revealed a marked sensitivity to the hydrogen concentration. While also having a response time of four minutes, the increased number of monolayers delayed the recovery time to 11 minutes. The probe with two monolayers of open-end nanotubes showed a response time of five minutes but never returned to its steady state. These characteristics have been attributed to the various hot guest interactions between the single nanotubes and the hydrogen molecules.

The researchers are further investigating the relationships between the optical, morphological and geometric properties of the sensitive overlay and the hydrogen concentration to tailor and control the sensing performances of the proposed devices.

The techniques that were used by the scientists to produce fiber optic nanosensors coated with engineered single-walled carbon nanotube overlays for hydrogen detection at cryogenic temperatures are patent pending.

Applied Physics Letters, Nov. 13, 2006, 201106.

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Basic Scienceignition energymolecular hydrogennanoOptical fiber sensorsphotonicsResearch & TechnologySensors & DetectorsTech Pulse

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.