Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Optical Oscilloscope Could Increase Data Rates by Factor of 10,000

Facebook Twitter LinkedIn Email Comments
ORLANDO, Fla., Dec. 23, 2021 — Researchers at the University of Central Florida (UCF) have developed an optical oscilloscope. The instrument converts light oscillations into electrical signals to measure the electric field of light.

Due to the high speed at which light oscillates, measuring its electric field has been a challenge. The most advanced techniques powering modern phone and internet communications can clock electric fields at up to gigahertz frequencies, covering the radio and microwave regions of the electromagnetic spectrum.
Michael Chini, associate professor of Physics at the University of Central Florida oversaw the development of the world’s first optical oscilloscope. Courtesy of the University of Central Florida.
Michael Chini, associate professor of physics at the University of Central Florida, oversaw the development of the world’s first optical oscilloscope. Courtesy of the University of Central Florida. 

However, lightwaves oscillate at much higher rates, allowing a higher density of information to be transmitted. However, the tools currently available only resolve an average signal associated with a “pulse” of light and not the peaks and valleys within the pulse. Measuring the peaks and valleys within a single pulse is important because it is in that space that information can be packed and delivered.

“Fiber optic communications have taken advantage of light to make things faster, but we are still functionally limited by the speed of the oscilloscope,” said Michael Chini, associate professor of physics at UCF. “Our optical oscilloscope may be able to increase that speed by a factor of about 10,000.”

Complete characterization of optical waveforms requires an optical oscilloscope capable of resolving the electric field oscillations with subfemtosecond resolution and with single-shot operation. The team showed that strong field nonlinear excitation of photocurrents in a silicon-based image sensor chip can provide the subcycle optical gate necessary to characterize carrier-envelope phase-stable optical waveforms in the mid-infrared.

By mapping the temporal delay between an intense excitation and weak perturbing pulse onto a transverse spatial coordinate of the image sensor, the team showed that the technique allowed single-shot measurement of few-cycle waveforms.

The researchers will continue to investigate the method to determine how far they can push its speed limits.

The work was supported primarily through a grant from the Air Force Office of Scientific Research. 

The research was published in Nature Photonics (www.doi.org/10.1038/s41566-021-00924-6).


Photonics.com
Dec 2021
GLOSSARY
oscilloscope
A system in which a supplied signal causes the deflection of the electron beam in a cathode-ray tube, thus forming a visible trace on the phosphor screen of the tube and providing for examination of signal characteristics. A CRT oscilloscope is particularly convenient for studying repetitive phenomena, but a tube with a long-delay phosphor can be used to analyze a single electrical pulse. An oscilloscope equipped with a camera becomes an oscillograph.
metrology
The science of measurement, particularly of lengths and angles.
waveform
The graph of the oscillating variations making up a wave, relative to time.
chip
1. A localized fracture at the end of a cleaved optical fiber or on a glass surface. 2. An integrated circuit.
Research & Technologyfiber optics & communicationoscilloscopeopticselectric fieldmeasuremetrologywaveformspeeddata rateUniversity of Central FloridaUCFMichael ChiniNature Photonicschipsingle-shotoptical waveformFiber Optics & CommunicationsTest & Measurement

Comments
Photonics Spectra Optics Conference 2022
LATEST HEADLINES
view all
PHOTONICS MARKETPLACE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2022 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.