Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Optical Tweezing Inspires Nanoscopic Trapping Method

Facebook Twitter LinkedIn Email
Researchers from the University of Technology Sydney (UTS) have deployed the existing principles of optical tweezer technology, which enables the manipulation and assemblage of nanoparticles, as a base for a technique that allows them to manipulate particles possessing the same refractive properties as those of the background environment in a given setting. Optical tweezing relies on a difference in the refractive properties between trapped nanoparticles and the surrounding environment.

The new method, shown as a proof of concept, involves doping nanocrystals with rare-earth metal ions and trapping the nanoparticles at low energy levels and with high levels of efficiency.

“Traditionally, you need hundreds of milliwatts of laser power to trap a 20-nanometer gold particle,” said Xuchen Shan, first co-author on the study describing the technique and a Ph.D. candidate in the UTS School of Electrical and Data Engineering. “With our new technology, we can trap a 20-nanometer particle using tens of milliwatts of power.”

The method is also highly sensitive — key to ensuring efficiency in operation.

“Our optical tweezers also achieved a record high degree of sensitivity or ‘stiffness’ for nanoparticles in a water solution,” Shan said. “Remarkably, the heat generated by this method was negligible compared with older methods, so our optical tweezers offer a number of advantages.”

In medicine, the researchers said the advancement is a cursory step for realizing the optical manipulation of, for example, intracellular structures, as well as performing nanoscale biomechanics measurements.

“The ability to push, pull, and measure the forces of microscopic objects inside cells, such as strands of DNA or intracellular enzymes, could lead to advances in understanding and treating many different diseases such as diabetes or cancer,” said Fan Wang, leading co-author on the study.

A downside of traditional mechanical microprobing for the manipulation of cells is that the process is invasive, Wang said. The positioning resolution is low, too; these microprobes can only measure cell membrane stiffness, as opposed to the force of molecular motor proteins inside a cell.

The rare-earth metal ion doping process of nanocrystals controlled both the refractive properties of the nanoparticles, as well as their luminescence.

The resonance of ions in nanocrystals creates a strong optical trapping force. Courtesy of Fan Wang.
The resonance of ions in nanocrystals creates a strong optical trapping force. Courtesy of Fan Wang.
The prospect of developing such a highly efficient nanoscale force probe advances the researchers toward development of a force probe that can be labeled to specifically target intracellular structures and organelles. This would enable the optical manipulation of the intracellular structures, said Peter Reece, also a leading study co-author, from the University of New South Wales.

The research was published in Nature Nanotechnology (

May/Jun 2021
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
The study of how light interacts with nanoscale objects and the technology of applying photons to the manipulation or sensing of nanoscale structures.
Research & TechnologyeducationAustraliaopticsoptogeneticsBiophotonicsoptical tweezersnanoscopic imagingnanonanophotonicscancermedicalOptical trappingrare-earth dopedrare-earthrare-earth ionsgoldnanocrystalsnanoscale bioBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.