Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Optoelectronic Tweezers Manipulate Microparticles

Facebook Twitter LinkedIn Email Comments
In the July 21 issue of Nature, researchers from the University of California, Berkeley, report the development of a novel technique for the manipulation of microscopic objects by electrokinetic forces using a photoconductive sample cell. The approach enables the dynamic control of single objects or of multiple objects in parallel, and it may have applications in cell sorting or in the growth of materials from colloidal suspensions.

The micromanipulation system features a sample cell defined by an upper ITO-coated glass electrode and a lower photosensitive surface constructed of layers of doped and undoped amorphous silicon and silicon nitride atop ITO-coated glass. The cell is biased with an AC signal. Exposing the photoconductive surface to 625-nm light creates a "virtual" electrode and attracts or repels particles depending on their properties. Because an optical intensity of only 10 nW/µm2 is required to create a virtual electrode, the output of a simple, incoherent source -- a Lumileds LED in the experiments -- is sufficient. The addition of a 1024 × 768-element Texas Instruments micromirror-based spatial light modulator and an objective lens to the setup enables the creation of complex, high-resolution patterns of micron-scale virtual electrodes.

To demonstrate the potential applications of the technique, the scientists sorted live and dead cells, manipulated 4.5-µm polystyrene beads in a 15,000-trap array and produced a virtual sorting machine that separated 10- and 24-µm beads.

Photonics Spectra
Aug 2005
Characteristic of an object so small in size or so fine in structure that it cannot be seen by the unaided eye. A microscopic object may be rendered visible when examined under a microscope.
As We Go To PressBreaking Newselectrokinetic forcesmicroscopicphotoconductivePresstime BulletinUniversity of California

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.