Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
Please note that photonics.com will be undergoing maintenance on Tuesday, 10/22/2019, from 7:00pm (EDT) to 10:00pm.

Optogenetics Device Offers Targeted Control of Light to Neurons

Facebook Twitter LinkedIn Email Comments
A University of Arizona research team has developed a wireless, battery-free method for controlling the intensity and frequency of light that is delivered to neurons in the brain. The miniature device for optogenetics can be fully implanted under the scalp and allows researchers to independently stimulate multiple locations in the brain of the same subject.

Battery free, implantable, miniature device for optogenetics, University of Arizona.
Wireless and battery-free implant with advanced control over targeted neuron groups. Courtesy of Philipp Gutruf.

The researchers said that previously developed ultrasmall, implantable devices for optogenetic neuromodulation were passive in their electronic design, precluding any form of active control or programmability. The new device exploits developments in integrated circuit and antenna design to provide position- and angle-independent wireless power harvesting, with full user-programmability over individual or multiple devices. The new implants are powered by external oscillating magnetic fields. They are not significantly larger or heavier than previous, passive systems.

The new antenna design eliminates a problem faced by previous optogenetic devices, where the strength of the signal being transmitted to the device varied depending on the angle of the brain (a subject would turn its head and the signal would weaken). “This system has two antennas in one enclosure,” said professor Philipp Gutruf. “We switch the signal back and forth very rapidly so we can power the implant at any orientation.

The new device provides digital control over the intensity and frequency of the light being emitted, Gutruf said. This allows the researchers to control exactly how much of the brain the light is affecting — the brighter the light, the farther it will reach. It also allows control over the heat generated by the light sources, so that neurons are not accidentally activated by heat. “We can also independently stimulate multiple places in the brain of the same subject, which also wasn’t possible before,” Gutruf said.

Combined image analysis with MRI and CT results superimposed on a 3D rendering of the animal implanted with the programmable bilateral multi µ-ILED device. University of Arizona.
Combined image analysis with MRI and CT results superimposed on a 3D rendering of the animal implanted with the programmable bilateral multi µ-ILED device. Courtesy of Philipp Gutruf.

The researchers demonstrated that animals implanted with these devices could be safely imaged with CT and MRI. The team said that the devices can be implanted via a simple surgical procedure, similar to surgeries in which humans are fitted with neurostimulators, and that the devices cause no adverse effects to subjects, and that their functionality does not degrade over time. 

The new device could expand current options for optogenetics researchers in the areas of output stabilization, intensity control, and multimodal operation, with potential applications in neuroscience research and, in particular, the precise dissection of neural circuit function during unconstrained behavioral studies. 

The research was published in Nature Electronics (https://doi.org/10.1038/s41928-018-0175-0).

BioPhotonics
Apr 2019
GLOSSARY
optoelectronics
A sub-field of photonics that pertains to an electronic device that responds to optical power, emits or modifies optical radiation, or utilizes optical radiation for its internal operation. Any device that functions as an electrical-to-optical or optical-to-electrical transducer. Electro-optic often is used erroneously as a synonym.
optogenetics
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
Research & TechnologyeducationUniversity of ArizonaAmericaslight sourcesoptoelectronicsoptogeneticsBiophotonicsneuron stimulationneural circuit functionmedicalmedicineBioScan

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.