Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Output Beam from Fiber Laser Is Radially Polarized

Photonics Spectra
Dec 2006
Intracavity conical prism forces oscillation in circularly symmetric polarization.

Breck Hitz

A radially polarized laser beam, in which the electrical field is always along a line from the center, like the hands on a clock, is useful in particle trapping and acceleration, as well as in high-resolution microscopy. Researchers have previously obtained radially polarized beams from gas and solid-state lasers (see, for example, Photonics Spectra, December 2005, page 112), but investigators at the University of Electro-Communications in Tokyo and at Northwest University in Xi’an, China, recently demonstrated what they believe to be the first fiber laser producing a radially polarized beam.


Figure 1. An intracavity, double-convex conical prism forced the laser to oscillate in a radially polarized mode. Reprinted with permission of Optics Letters.

They forced the laser to oscillate in the radial polarization with a conical intracavity prism (Figure 1). They designed the prism so that the intracavity beam intersected its surface at Brewster’s angle. The azimuthal component of the beam’s electric field was always incident normal to the prism’s surface and thus was partially reflected out of the cavity. Only the radial component passed through the prism unscathed. The 30-mm-long, fused-silica prism converted the solid incoming beam to a hollow beam exiting the prism (and vice versa for the intracavity power traveling right to left, Figure 2).

Figure 2. Only the radial component of the intracavity electrical field intersected the conical prism at Brewster’s angle.

The researchers pumped a 2-m-long, Yb-doped multimode fiber laser with 976-nm light, up to 236 mW of which was absorbed in the fiber, producing 6.2 mW at 1040 nm. The radial polarization, however, was imperfect, revealing a nonuniform polarized intensity (Figure 3). They believe that there are several explanations for the imperfection, including cross-excitation of nonradial-polarized modes, mode coupling and the high level of unpolarized amplified spontaneous emission. They are striving to address these issues.

Figure 3.
These photos show the intensity of the laser beam viewed through a linear polarizer oriented as indicated by the white arrows. If the laser’s polarization were perfectly radial, two equally bright areas would appear diametrically opposite from each other. (Photo b shows the closest case to perfect radial polarization.)

“This is the first time such work has been done in an active optical fiber. The beam with radial polarization is valuable for several important modern devices and applications,” said Dr. Jian-lang Li, a staff scientist at the Japanese university. “Furthermore, a special fiber can be created for weakening the coupling between TM01 and HE21 modes. We expect this will lead to high-power fiber lasers with radial polarization.” 

Optics Letters, Oct. 15, 2006, pp. 2969-2971.

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
With respect to light radiation, the restriction of the vibrations of the magnetic or electric field vector to a single plane. In a beam of electromagnetic radiation, the polarization direction is the direction of the electric field vector (with no distinction between positive and negative as the field oscillates back and forth). The polarization vector is always in the plane at right angles to the beam direction. Near some given stationary point in space the polarization direction in the beam...
Communicationsfiber lasersfiber opticsMicroscopynanophotonicspolarizationpolarized laser beamResearch & Technology

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.