Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Photocurrent of single molecule measured

Facebook Twitter LinkedIn Email Comments
Single small molecules can be used as functional components in optoelectronic circuits, but until now, controlling and probing such molecules for photovoltaic and photoelectrochemical applications have proved difficult.

Scientists at the Technical University of Munich, the Munich Center for Advanced Photonics, Nanosystems Initiative Munich and Tel Aviv University, however, have developed a method sensitive enough to provide these measurements using a scanning near-field optical microscope setup.

The team investigated the photocurrent generated by a single photosynthetic protein – photosystem I – that exhibits outstanding optoelectronic properties found only in photosynthetic systems.

An international team has investigated the photocurrent generated by a single photosynthetic protein – photosystem I – that exhibits outstanding optoelectronic properties found only in photosynthetic systems. Here, photosystem-I (green) is optically excited by an electrode (top). An electron is then transferred step by step in only 16 ns. Courtesy of Christoph Hohmann, Nanosystems Initiative Munich.

The photocurrent was measured with a gold-covered glass tip in a scanning near-field optical microscopy setup. The photosynthetic proteins were optically excited by a photon flux guided through the tetrahedral tip – the microscope’s probe – that at the same time provided the electrical contact. With this technique, the physicists were able to monitor the photocurrent generated in single proteins. They demonstrated that such a system can be integrated and selectively addressed in an artificial photovoltaic device while still retaining its biomolecular functional properties.

“They act as light-driven, highly efficient single-molecule electron pumps that can function as current generators in nanoscale electric circuits,” the researchers said in Nature Nanotechnology (doi: 10.1038/nnano.2012.165).

The research was supported by the German Research Foundation, the Clusters of Excellence Munich Center for Advanced Photonics and Nanosystems Initiative Munich, and the ERC Advanced Grant MolArt.

Dec 2012
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
biomolecular functional propertieschloroplastscyanobacteriacysteine mutation groupselectric circuitsEuro NewsEuropeGermanygold-covered glass tipMicroscopyMiddle Eastmolecular optoelectronicsnanoNewsopticsphotocurrent monitoringphotocurrentsphotonicsphotosynthesisphotosynthetic proteinsphotosystem-IScanning near-field optical microscopysingle functionalized photosynthetic protein systemsingle proteinssingle-molecule electron pumpsTechnical University of MunichTel Aviv University

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to EuroPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.