Search
Menu
Meadowlark Optics - SEE WHAT

Photonic Barcodes Pave the Way for Encryption, Biosensing

Facebook X LinkedIn Email
Bioresponsive barcodes, capable of detecting molecules in a single liquid droplet, generated radiative energy that successfully converted dynamic biomolecular information into trillions of distinctive photonic barcodes. Microdroplet radiative energy that was transferred to binding biomolecules enabled the conversion.

A team led by Yu-Cheng Chen of the Bio+Intelligent Photonics Laboratory at Nanyang Technological University demonstrated the process, introducing the concept of resonance energy transfer at the interface of the microcavity.

The development overcomes the inability of optical barcodes to characterize what Chen called “dynamic changes” in response to analytes occurring over time. The work additionally expands on the idea that optical barcodes, historically, refer to a fixed spectral pattern’s correspondence to a single, unchanged target.

Optical barcodes are used in/for multiplexed bioassays and cell tagging, as well. Via unique spectra fingerprints, for example, they support tracking and detection useful to enacting security measures.

The system’s base is an active whispering-gallery mode resonator (WGMR). The resonator uses the present analyte as a gain medium, Chen explained, to support the excitation and subsequent collection of free space. That component of the process allows the resonator to acquire biological information from emission signals.

Most WGMRs operate passively; they require evanescent wave coupling to achieve functionality, and operate based on mode changes. For mode changes to take place, perturbations must occur first.

The factor created by the analytes’ mode occupation outside the cavity commonly causes a reduction to the effective Q-factor, as well as a poor signal-to-noise ratio (SNR). The Chen-led team was able to bypass this issue through resonant energy transfer — the very concept of which separates what are known as donor molecules from acceptor molecules at the interface of the cavity.

Bristol Instruments, Inc. - 872 Series High-Res 4/24 MR

It is at that interface that the transfer of radiative energy takes place, accompanied by electromagnetic radiation that permits the transfer of energy even when separation occurs between donor and acceptor molecules.

Dynamic photonic barcodes enable molecular detection. Courtesy of 'Zhou et al.'
Dynamic photonic barcodes enable molecular detection. Courtesy of Zhou et al.
When mechanisms that include or are enhanced by a cavity, the efficient transfer of energy (as demonstrated) and donor/acceptor coupling can enhance light-matter interactions and the SNR, Chen said. A high concentration of dye from the donor molecules inside of the microdroplet triggered a cavity-enhanced energy transfer in the new system. This excited the acceptor molecules attached to the cavity interface.

“When biomolecules bind to the cavity interface, the number of binding molecules alters the amount of energy transfer, resulting in distinctive modulated fluorescence emission peaks,” Chen said. By improving the SNR ratio after binding to target molecules, the system achieved dynamic spectral barcoding.

The resulting encoding system increases the complexity of such systems. Applications, the researchers said, exist in biosensing and optical encryption.

The research was published in Advanced Photonics (www.doi.org/10.1117/1.AP.2.6.066002).

Published: November 2020
Glossary
integrated photonics
Integrated photonics is a field of study and technology that involves the integration of optical components, such as lasers, modulators, detectors, and waveguides, on a single chip or substrate. The goal of integrated photonics is to miniaturize and consolidate optical elements in a manner similar to the integration of electronic components on a microchip in traditional integrated circuits. Key aspects of integrated photonics include: Miniaturization: Integrated photonics aims to reduce the...
optoelectronics
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
whispering gallery mode
Whispering gallery mode (WGM) refers to a phenomenon in wave physics, particularly in optics, where waves, such as light or sound waves, are trapped and circulate along the periphery of a curved surface. The term "whispering gallery" is derived from the acoustic behavior observed in certain architectural structures, like domes or circular galleries, where whispers or sounds made at one point can be heard clearly at another distant point due to multiple reflections along the curved surface. In...
Research & TechnologyeducationSPIEAsia-PacificAmericasintegrated photonicsoptoelectronicsSensors & DetectorsbiosensingbarcodesNanyang Technological Universitywhispering gallery mode resonatorwhispering gallery modeoptical encryptionTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.