Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Photonic Cluster States Generated at Room Temps for Optical Quantum Computation

Facebook Twitter LinkedIn Email Comments
KONGENS LYNGBY, Denmark, Nov. 18, 2019 — To observe quantum phenomena on a macroscopic scale, researchers at the Center for Macroscopic Quantum States (bigQ) and the Technical University of Denmark (DTU) created an extremely entangled quantum state, called a cluster state. The team’s scalable scheme for the generation of photonic cluster states could be suitable for universal measurement-based quantum computation.

The researchers used temporal multiplexing of squeezed light modes, delay loops, and beamsplitter transformations to generate a cylindrical cluster state with a topological structure, as required for universal quantum information processing. The generated state consisted of more than 30,000 entangled light pulses arranged in a 2D cylindrical lattice. The source of 2D cluster states demonstrated by the researchers could be combined with quantum error correction to enable fault-tolerant quantum computation.

The researchers have produced light beams with special quantum mechanical properties (squeezed states) and woven them together using optical fiber components to form an extremely entangled quantum state with a 2D lattice structure, also called a cluster state. The researchers compare this state to a myriad of colored threads woven together into a patterned blanket. Courtesy of Jonas S. Neergaard-Nielsen.
The researchers have produced light beams with special quantum mechanical properties (squeezed states) and woven them together using optical fiber components to form an extremely entangled quantum state with a 2D lattice structure, also called a cluster state. Courtesy of Jonas S. Neergaard-Nielsen.

“As opposed to traditional cluster states, we make use of the temporal degree of freedom to obtain the two-dimensional entangled lattice of 30,000 light pulses,” researcher Mikkel Vilsbøll Larsen said. “The experimental setup is actually surprisingly simple. Most of the effort was in developing the idea of the cluster state generation.”

In contrast to superconducting technologies for quantum computing, the researchers’ approach could be used to create an optical quantum computer where everything takes place at room temperature. In addition, the long coherence time of the laser light could be maintained as a precisely defined lightwave even over very long distances.

An optical quantum computer would therefore not require costly and advanced refrigeration technology. At the same time, its information-carrying light-based qubits in the laser light would be more durable than the ultracold electronic counterparts used by superconductors.

An illustration of the temporal evolution of the cluster state generation scheme. Courtesy of  Mikkel V. Larsen.

An illustration of the temporal evolution of the cluster state generation scheme. Courtesy of Mikkel V. Larsen.

“Through the distribution of the generated cluster state in space and time, an optical quantum computer can also more easily be scaled to contain hundreds of qubits,” professor Ulrik Lund Andersen said. “This makes it a potential candidate for the next generation of larger and more powerful quantum computers.”

The research was published in Science (www.doi.org/10.1126/science.aay4354).

Photonics.com
Nov 2019
GLOSSARY
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
Research & TechnologyeducationEuropeTechnical University of Denmarklight sourcesquantumphotonic cluster statesquantum entanglementoptical quantum computingtopological materials2D materialssqueezed light

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.