Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Pollution-Controlling Gold Nanoparticles
Jun 2010
ARGONNE, Ill., June 16, 2010 — Using silver chloride nanowires decorated with gold nanoparticles, a scientist at the US Department of Energy’s (DoE) Argonne National Laboratory has created visible-light catalysis that may decompose organic molecules in polluted water.

The gold-coated silver chloride nanowires at the microscopic level.

“Silver nanowires have been extensively studied and used for a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic devices,” said nanoscientist Yugang Sun of Argonne’s Center for Nanoscale Materials. “By chemically converting them into semiconducting silver chloride nanowires, followed by adding gold nanoparticles, we have created nanowires with a completely new set of properties that are significantly different from the original nanowires.”

Traditional silver chloride photocatalytic properties are restricted to ultraviolet and blue light wavelengths, but with the addition of the gold nanoparticles, they become photocatalytic in visible light. The visible light excites the electrons in the gold nanoparticles and initiates reactions that culminate in charge separation on the silver chloride nanowires. Tests have already shown that gold-decorated nanowires can decompose organic molecules such as methylene blue.

“If you were to create a film of gold-decorated nanowires and allow polluted water to flow through it, the organic molecules may be destroyed with visible irradiation from conventional fluorescent light bulbs or the sun,” Sun said.

Argonne scientist Yugang Sun prepares a sample of silver chloride nanowires at the Center for Nanoscale Materials.

Sun started with traditional silver nanowires that were oxidized with iron chloride to create silver chloride nanowires. A sequential reaction with sodium tetrachloroaurate deposited the gold nanoparticles on the wires.

Sun said it is possible to use a similar mechanism to deposit other metals such as palladium and platinum onto the silver chloride nanowires and create new properties, such as the ability to catalyze the splitting of water into hydrogen with sunlight.

A paper on this research was published in the Journal of Physical Chemistry C.

Funding was provided by the US Department of Energy Office of Science.

For more information, visit: 

AmericasArgonne National LaboratoryBasic Scienceblue light wavelengthdecompose organic moleculesDepartment of Energyenergygold nanoparticlesgreen photonicsIllinoislight sourcesmethylene bluenanooptoelectronic devicespalladiumphotocatalytic propertiesplatinumpolluted waterResearch & Technologysilver chloride Nanowiressodium tetrachloroauratesolar cellstransparent conductive electrodesultravioletvisible-light catalysisYagang Sun

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.