Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

QC Nanoantenna Demo'd
Oct 2007
CAMBRIDGE, Mass., Oct. 22, 2007 -- The demonstration of a quantum cascade (QC) laser nanoantenna, a device capable of resolving the chemical composition of samples such as the interior of a cell with unprecedented detail, is being described as a major feat of nanotechnology by the team that spearheaded the project.

Harvard graduate students Nanfang Yu and Ertugrul Cubukcu and physics professor Federico Capasso, all of Harvard’s School of Engineering and Applied Sciences, have filed for US patents covering this new class of photonic devices and are publishing their findings in this week's Applied Physics Letters.

Capasso said, “There’s currently a major push to develop powerful tabletop microscopes with spatial resolution much smaller than the wavelength that can provide images of materials, and in particular biological specimens, with chemical information on a nanometric scale.”

The laser is comprised of two gold rods separated by a nanometer gap (a device known as an optical antenna) built on the facet of a quantum cascade laser, which emits invisible light in the region of the spectrum where most molecules have their telltale absorption fingerprints. The nanoantenna creates a light spot of nanometric size about 50 to 100 times smaller than the laser wavelength; the spot can be scanned across a specimen to provide chemical images of the surface with superior spatial resolution.

While infrared microscopes -- based on the detection of molecular absorption fingerprints -- are commercially available and widely used to map the chemical composition of materials, their spatial resolution is limited by the range of available light sources and optics to well above the wavelength, the university said in a statement. Likewise, the so-called near field infrared microscopes -- which rely on an ultrasharp metallic tip scanned across the sample surface at nanometric distances -- can provide ultrahigh spatial resolution, but applications are so far strongly limited by the use of bulky lasers with very limited tunability and wavelength coverage.

"By combining quantum cascade lasers with optical antenna nanotechnology, we have created for the first time an extremely compact device that will enable the realization of new ultrahigh spatial resolution microscopes for chemical imaging on a nanometric scale of a wide range of materials and biological specimens," Capasso said.

QC lasers were invented and first demonstrated by Capasso and his group at Bell Labs in 1994. These compact, millimeter-length semiconductor lasers (which are now commercially available) are made by stacking nanometer-thick layers of semiconductor materials on top of each other. By varying the thickness of the layers, one can select the wavelength of the QC laser across essentially the entire infrared spectrum where molecules absorb, thus custom designing it for a specific application. In addition, by suitable design, the wavelength of a particular QCL can be made widely tunable. Potential applications of QC laser-based chemical sensors include pollution monitoring, chemical sensing, medical diagnostics such as breath analysis, and homeland security.

The team's co-authors are Kenneth Crozier, assistant professor of electrical engineering, and research associates Mikhail Belkin and Laurent Diehl, all of Harvard’s School of Engineering and Applied Sciences; and David Bour, Scott Corzine and Gloria Höfler, all formerly with Agilent Technologies. The research was supported by the Air Force Office of Scientific Research and the National Science Foundation. The authors also acknowledge the support of two Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

For more information, visit:

The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
defenseHarvardHarvard engineeringMicroscopynanonanoantennananotechnologyNews & Featuresphotonicsqcqc laserquantum cascadeSensors & Detectorstapletop microscopes

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.