Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

QD Method Combines Best of Optical, Electron Microscopy

Facebook X LinkedIn Email
A fast, versatile and high-resolution technique that combines the best of optical and scanning electron microscopy could provide surface and subsurface viewing of features as small as 10 nm in size.

Researchers working at the National Institute of Standards and Technology (NIST) have developed the microscopy method using a process similar to how an old tube television produces a picture — called cathodoluminescence — to image nanoscale features. Much as in an old tube television, where a beam of electrons moves over a phosphor screen to create images, the new technique works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots (QDs).

The QDs emit low-energy visible light very close to the surface of the sample, exploiting so-called “near field” effects of light. After interacting with the sample, the scattered photons are collected using a closely placed photodetector, allowing an image to be constructed.

Much as in an old tube television, where a beam of electrons moves over a phosphor screen to create images, the microscopy technique developed at NIST works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots.
Much as in an old tube television, where a beam of electrons moves over a phosphor screen to create images, the microscopy technique developed at NIST works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots. The dots absorb the energy and emit it as visible light that interacts with the sample at close range. The scattered photons are collected using a similarly closely placed photodetector (not depicted), allowing an image to be constructed. Courtesy of Dill/NIST.

The first demonstration of the technique was used to image the natural nanostructure of the photodetector itself. Because both the light source and detector are so close to the sample, the diffraction limit doesn't apply, and much smaller objects can be imaged.

Meadowlark Optics - Building system MR 7/23

“Initially, our research was driven by our desire to study how inhomogeneities in the structure of polycrystalline photovoltaics could affect the conversion of sunlight to electricity and how these devices can be improved,” said Heayoung Yoon, a postdoctoral researcher in the Energy Research Group at NIST. “But we quickly realized that this technique could also be adapted to other research regimes, most notably imaging for biological and cellular samples, wet samples, samples with rough surfaces, as well as organic photovoltaics.”

The technique evades two problems in nanoscale microscopy: the diffraction limit, which restricts conventional optical microscopes to resolutions no better than about half the wavelength of the light (about 250 nm for green light), and the relatively high energies and sample preparation requirements of electron microscopy that are destructive to fragile specimens like tissue.

NIST researcher Nikolai Zhitenev, a co-developer of the technique, had the idea a few years ago to use a phosphor coating to produce light for near-field optical imaging, but at the time, no phosphor available was thin enough. Thick phosphors cause the light to diverge, severely limiting the image resolution.

This changed when the NIST researchers teamed with scientists from a company that builds highly engineered and optimized QDs for lighting applications. The QDs potentially could do the same job as a phosphor and be applied in a coating both homogenous and thick enough to absorb the entire electron beam while also thin enough that the light produced does not have to travel far to the sample.

The collaboration discovered that the QDs, which have a unique core-shell design, efficiently produced low-energy photons in the visible spectrum when energized with a beam of electrons. With a potential thin-film light source in hand, the group developed a deposition process to bind them to specimens as a film with a controlled thickness of approximately 50 nm.

The investigators are now anxious to make the technique available to the wider research community and to see the results, Yoon said.

Worcester Polytechnic Institute, QD Vision, Sandia National Laboratories and the Maryland NanoCenter at the University of Maryland also contributed to the research, which appeared online in AIP Advances (doi: 10.1063/1.4811275). 

For more information, visit: www.nist.gov

Published: June 2013
Glossary
cathodoluminescence
Light produced when a metal is bombarded with high-velocity electrons causing small amounts of the metal to vaporize and emit radiation. Also known as electronoluminescence.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
scanning electron microscopy
Scanning electron microscopy (SEM) is an advanced imaging technique used in microscopy to obtain high-resolution, three-dimensional images of the surfaces of solid specimens. SEM achieves this by using a focused beam of electrons to scan the specimen's surface, resulting in detailed images with magnifications ranging from about 10x to 100,000x or higher. Key features and principles of scanning electron microscopy include: Electron beam: SEM uses an electron beam instead of visible light for...
AmericascathodoluminescenceConsumergreen photonicsHeayoung YoonImagingMarylandMaryland NanoCenterMicroscopynanoNational Institute of Standards and TechnologyNikolai ZhitenevNISToptical microscopyOpticsQD Visionquantum dotsResearch & TechnologySandia National Laboratoriesscanning electron microscopySensors & DetectorsUniversity of MarylandWorcester Polytechnic Institute

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.